Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations.

{:[-5y+4x=49],[7y+2x=-23],[x=◻],[y=◻]:}

Solve the system of equations.\newline5y+4x=49 -5 y+4 x=49 \newline7y+2x=23 7 y+2 x=-23 \newlinex= x= \newliney= y=

Full solution

Q. Solve the system of equations.\newline5y+4x=49 -5 y+4 x=49 \newline7y+2x=23 7 y+2 x=-23 \newlinex= x= \newliney= y=
  1. Identify Variable to Eliminate: Identify the variable to eliminate. We can choose to eliminate either 'xx' or 'yy' by multiplying the equations by appropriate numbers so that the coefficients of one variable will be opposites.
  2. Multiply Equations by Appropriate Numbers: Multiply the first equation by 77 and the second equation by 5-5 to get the coefficients of 'y' to be opposites.\newline7(5y+4x)=7(49)7(-5y + 4x) = 7(49)\newline5(7y+2x)=5(23)-5(7y + 2x) = -5(-23)\newlineThis gives us:\newline35y+28x=343-35y + 28x = 343\newline35y10x=115-35y - 10x = 115
  3. Add Equations to Eliminate 'y': Add the equations to eliminate 'y'.\newline(35y+28x)+(35y10x)=343+115(-35y + 28x) + (-35y - 10x) = 343 + 115\newline35y+28x35y10x=458-35y + 28x - 35y - 10x = 458\newline70y+18x=458-70y + 18x = 458
  4. Correct Calculation: There seems to be a mistake in the previous step. The coefficients of 'y' are the same, so they should cancel out when added. Let's correct the calculation.\newline35y+28x35y10x=343+115-35y + 28x - 35y - 10x = 343 + 115\newline70y+18x=458-70y + 18x = 458\newlineThis is incorrect. The correct calculation should be:\newline35y+28x+35y10x=343+115-35y + 28x + 35y - 10x = 343 + 115\newline28x10x=45828x - 10x = 458\newline18x=45818x = 458

More problems from Solve a system of equations using elimination