Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations.

{:[5x-2y-4=0],[3x+16 y-54=0],[x=◻],[y=◻]:}

Solve the system of equations.\newline5x2y4=03x+16y54=0x=y= \begin{array}{l} 5 x-2 y-4=0 \\ 3 x+16 y-54=0 \\ x=\square \\ y=\square \end{array}

Full solution

Q. Solve the system of equations.\newline5x2y4=03x+16y54=0x=y= \begin{array}{l} 5 x-2 y-4=0 \\ 3 x+16 y-54=0 \\ x=\square \\ y=\square \end{array}
  1. Isolate xx in first equation: Isolate one of the variables in one of the equations. Let's isolate xx in the first equation.\newline5x2y4=05x - 2y - 4 = 0\newline5x=2y+45x = 2y + 4\newlinex=2y+45x = \frac{2y + 4}{5}
  2. Substitute xx into second equation: Substitute the expression for xx from Step 11 into the second equation.3x+16y54=03x + 16y - 54 = 03(2y+45)+16y54=03\left(\frac{2y + 4}{5}\right) + 16y - 54 = 0Multiply through by 55 to clear the fraction:5[3(2y+45)+16y54]=5(0)5\left[3\left(\frac{2y + 4}{5}\right) + 16y - 54\right] = 5(0)3(2y+4)+80y270=03(2y + 4) + 80y - 270 = 0
  3. Multiply through to clear fraction: Distribute and combine like terms.\newline6y+12+80y270=06y + 12 + 80y - 270 = 0\newline86y258=086y - 258 = 0
  4. Combine like terms: Solve for yy.86y=25886y = 258y=25886y = \frac{258}{86}y=3y = 3
  5. Solve for y: Substitute y=3y = 3 back into the expression for xx from Step 11.\newlinex=2y+45x = \frac{2y + 4}{5}\newlinex=2(3)+45x = \frac{2(3) + 4}{5}\newlinex=6+45x = \frac{6 + 4}{5}\newlinex=105x = \frac{10}{5}\newlinex=2x = 2
  6. Substitute yy back into xx expression: Write the solution as a coordinate point.\newlineThe solution is (2,3)(2, 3).

More problems from Solve a system of equations using elimination