Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations.

{:[5x+12 y-10=0],[2x-3y+35=0],[x=◻],[y=◻]:}

Solve the system of equations.\newline5x+12y10=02x3y+35=0x=y= \begin{array}{l} 5 x+12 y-10=0 \\ 2 x-3 y+35=0 \\ x=\square \\ y=\square \end{array}

Full solution

Q. Solve the system of equations.\newline5x+12y10=02x3y+35=0x=y= \begin{array}{l} 5 x+12 y-10=0 \\ 2 x-3 y+35=0 \\ x=\square \\ y=\square \end{array}
  1. Write equations: Write down the system of equations to be solved.\newlineWe have the following system of equations:\newline5x+12y10=05x + 12y - 10 = 0\newline2x3y+35=02x - 3y + 35 = 0
  2. Solve for x: Solve the first equation for x.\newlineWe can rearrange the first equation to express x in terms of y:\newline5x+12y10=05x + 12y - 10 = 0\newline5x=1012y5x = 10 - 12y\newlinex=1012y5x = \frac{10 - 12y}{5}
  3. Substitute xx into second equation: Substitute the expression for xx from Step 22 into the second equation.\newlineSubstituting x=1012y5x = \frac{10 - 12y}{5} into 2x3y+35=02x - 3y + 35 = 0 gives us:\newline2(1012y5)3y+35=02\left(\frac{10 - 12y}{5}\right) - 3y + 35 = 0\newlineMultiplying through by 55 to clear the fraction:\newline2(1012y)15y+175=02(10 - 12y) - 15y + 175 = 0\newline2024y15y+175=020 - 24y - 15y + 175 = 0
  4. Combine terms and solve for y y : Combine like terms and solve for y y .\newline2024y15y+175=0 20 - 24y - 15y + 175 = 0 \newline39y+195=0 -39y + 195 = 0 \newline39y=195 -39y = -195 \newliney=19539 y = \frac{-195}{-39} \newliney=5 y = 5
  5. Substitute yy into xx expression: Substitute the value of yy back into the expression for xx from Step 22.\newlineSubstituting y=5y = 5 into x=1012y5x = \frac{10 - 12y}{5} gives us:\newlinex=1012(5)5x = \frac{10 - 12(5)}{5}\newlinex=10605x = \frac{10 - 60}{5}\newlinex=505x = \frac{-50}{5}\newlinex=10x = -10
  6. Write solution as ordered pair: Write the solution as an ordered pair.\newlineThe solution to the system of equations is (x,y)=(10,5)(x, y) = (-10, 5).

More problems from Solve a system of equations using elimination