Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations.

{:[-4y+11 x-67=0],[2y+5x-19=0],[x=◻],[y=◻]:}

Solve the system of equations.\newline4y+11x67=02y+5x19=0x=y= \begin{array}{l} -4 y+11 x-67=0 \\ 2 y+5 x-19=0 \\ x=\square \\ y=\square \end{array}

Full solution

Q. Solve the system of equations.\newline4y+11x67=02y+5x19=0x=y= \begin{array}{l} -4 y+11 x-67=0 \\ 2 y+5 x-19=0 \\ x=\square \\ y=\square \end{array}
  1. Write equations: Write down the system of equations.\newlineWe have the following system of equations:\newline4y+11x67=0-4y + 11x - 67 = 0\newline2y+5x19=02y + 5x - 19 = 0
  2. Solve for y: Solve one of the equations for one of the variables.\newlineLet's solve the second equation for y:\newline2y=5x+192y = -5x + 19\newliney=52x+192y = \frac{-5}{2}x + \frac{19}{2}
  3. Substitute yy into first equation: Substitute the expression for yy into the first equation.\newlineSubstitute y=52x+192y = \frac{-5}{2}x + \frac{19}{2} into the first equation:\newline\(-4\left(\frac{5-5}{22}x + \frac{1919}{22}\right) + 1111x - 6767 = 00"}
  4. Distribute and simplify: Distribute and simplify the first equation.\newline4(52)x+4(192)+11x67=0-4 \cdot \left(-\frac{5}{2}\right)x + -4 \cdot \left(\frac{19}{2}\right) + 11x - 67 = 0\newline10x38+11x67=010x - 38 + 11x - 67 = 0\newline21x105=021x - 105 = 0
  5. Solve for x: Solve for x.\newline21x=10521x = 105\newlinex=10521x = \frac{105}{21}\newlinex=5x = 5
  6. Substitute xx into yy expression: Substitute x=5x = 5 into the expression for yy.
    y=(52)(5)+192y = \left(-\frac{5}{2}\right)(5) + \frac{19}{2}
    y=(252)+192y = \left(-\frac{25}{2}\right) + \frac{19}{2}
  7. Calculate y: Calculate the value of yy.
    y=252+192y = \frac{-25}{2} + \frac{19}{2}
    y=25+192y = \frac{-25 + 19}{2}
    y=62y = \frac{-6}{2}
    y=3y = -3
  8. Write solution as ordered pair: Write the solution as an ordered pair.\newlineThe solution to the system of equations is (x,y)=(5,3)(x, y) = (5, -3).

More problems from Solve a system of equations using elimination