Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Solve the
system of equations
.
\newline
3
y
+
10
x
−
54
=
0
5
y
−
2
x
−
34
=
0
x
=
□
y
=
□
\begin{array}{l} 3 y+10 x-54=0 \\ 5 y-2 x-34=0 \\ x=\square \\ y=\square \end{array}
3
y
+
10
x
−
54
=
0
5
y
−
2
x
−
34
=
0
x
=
□
y
=
□
View step-by-step help
Home
Math Problems
Algebra 2
Solve a system of equations using elimination
Full solution
Q.
Solve the system of equations.
\newline
3
y
+
10
x
−
54
=
0
5
y
−
2
x
−
34
=
0
x
=
□
y
=
□
\begin{array}{l} 3 y+10 x-54=0 \\ 5 y-2 x-34=0 \\ x=\square \\ y=\square \end{array}
3
y
+
10
x
−
54
=
0
5
y
−
2
x
−
34
=
0
x
=
□
y
=
□
Rearrange to solve for y:
First, let's rearrange the first equation to solve for y.
\newline
3
y
=
54
−
10
x
3y = 54 - 10x
3
y
=
54
−
10
x
\newline
y
=
54
−
10
x
3
y = \frac{54 - 10x}{3}
y
=
3
54
−
10
x
\newline
y
=
18
−
10
3
x
y = 18 - \frac{10}{3}x
y
=
18
−
3
10
x
Substitute
y
y
y
in second equation:
Now, substitute
y
y
y
in the second equation with the expression we found.
5
(
18
−
(
10
3
)
x
)
−
2
x
=
34
5(18 - (\frac{10}{3})x) - 2x = 34
5
(
18
−
(
3
10
)
x
)
−
2
x
=
34
Distribute and simplify:
Distribute the
5
5
5
into the parentheses.
90
−
(
50
3
)
x
−
2
x
=
34
90 - \left(\frac{50}{3}\right)x - 2x = 34
90
−
(
3
50
)
x
−
2
x
=
34
Combine like terms:
Combine like terms by finding a common denominator for
x
x
x
.
$
90
−
50
3
x
−
6
3
x
=
34
\$90 - \frac{50}{3}x - \frac{6}{3}x = 34
$90
−
3
50
x
−
3
6
x
=
34
\)
90
−
56
3
x
=
34
90 - \frac{56}{3}x = 34
90
−
3
56
x
=
34
Isolate x terms:
Subtract
90
90
90
from both sides to isolate the x terms.
\newline
−
(
56
3
)
x
=
34
−
90
-(\frac{56}{3})x = 34 - 90
−
(
3
56
)
x
=
34
−
90
\newline
−
(
56
3
)
x
=
−
56
-(\frac{56}{3})x = -56
−
(
3
56
)
x
=
−
56
Solve for x:
Multiply both sides by
−
3
56
-\frac{3}{56}
−
56
3
to solve for x.
\newline
x
=
(
−
56
×
−
3
56
)
x = (-56 \times -\frac{3}{56})
x
=
(
−
56
×
−
56
3
)
\newline
x
=
3
x = 3
x
=
3
Substitute
x
x
x
back into
y
y
y
equation:
Now, substitute
x
x
x
back into the equation we found for
y
y
y
.
y
=
18
−
(
10
3
)
(
3
)
y = 18 - \left(\frac{10}{3}\right)(3)
y
=
18
−
(
3
10
)
(
3
)
Simplify y equation:
Simplify the equation for
y
y
y
.
y
=
18
−
10
y = 18 - 10
y
=
18
−
10
y
=
8
y = 8
y
=
8
More problems from Solve a system of equations using elimination
Question
Solve using substitution.
5
x
−
2
y
=
−
7
5x - 2y = -7
5
x
−
2
y
=
−
7
x
=
−
5
x = -5
x
=
−
5
(_,_)
Get tutor help
Posted 9 months ago
Question
Is
(
1
,
1
)
(1,1)
(
1
,
1
)
a solution to this system of equations?
\newline
4
x
+
10
y
=
14
4x + 10y = 14
4
x
+
10
y
=
14
\newline
x
+
6
y
=
7
x + 6y = 7
x
+
6
y
=
7
\newline
Choices:
\newline
(A) yes
\newline
(B) no
Get tutor help
Posted 9 months ago
Question
Which describes the system of equations below?
\newline
y
=
–
3
x
+
9
y = –3x + 9
y
=
–3
x
+
9
\newline
y
=
–
3
x
+
9
y = –3x + 9
y
=
–3
x
+
9
\newline
Choices:
\newline
(A) consistent and independent
\text{(A) consistent and independent}
(A) consistent and independent
\newline
(B) consistent and dependent
\text{(B) consistent and dependent}
(B) consistent and dependent
\newline
(C) inconsistent
\text{(C) inconsistent}
(C) inconsistent
Get tutor help
Posted 9 months ago
Question
Solve using elimination.
\newline
7
x
−
8
y
=
−
17
7x - 8y = -17
7
x
−
8
y
=
−
17
\newline
−
7
x
+
3
y
=
2
-7x + 3y = 2
−
7
x
+
3
y
=
2
\newline
(
_
_
_
_
,
_
_
_
_
)
(\_\_\_\_, \_\_\_\_)
(
____
,
____
)
Get tutor help
Posted 9 months ago
Question
Solve.
\newline
x
=
−
2
x = -2
x
=
−
2
\newline
−
2
x
+
2
y
=
−
8
-2x + 2y = -8
−
2
x
+
2
y
=
−
8
\newline
(
_
_
_
_
,
_
_
_
_
)
(\_\_\_\_, \_\_\_\_)
(
____
,
____
)
Get tutor help
Posted 1 year ago
Question
Write a system of equations to describe the situation below, solve using any method, and fill in the blanks.
\newline
At a community barbecue, Mrs. Wilkerson and Mr. Hogan are buying dinner for their families. Mrs. Wilkerson purchases
3
3
3
hot dog meals and
3
3
3
hamburger meals, paying a total of
$
36
\$36
$36
. Mr. Hogan buys
1
1
1
hot dog meal and
3
3
3
hamburger meals, spending
$
26
\$26
$26
in all. How much do the meals cost?
\newline
Hot dog meals cost
$
\$
$
_______ each, and hamburger meals cost
$
\$
$
________ each.
Get tutor help
Posted 1 year ago
Question
Solve the system of equations by substitution.
\newline
−
3
x
−
y
−
3
z
=
−
11
-3x - y - 3z = -11
−
3
x
−
y
−
3
z
=
−
11
\newline
z
=
5
z = 5
z
=
5
\newline
x
−
y
+
3
z
=
19
x - y + 3z = 19
x
−
y
+
3
z
=
19
\newline
(____.____,____)
Get tutor help
Posted 9 months ago
Question
Solve the system of equations by elimination.
\newline
x
−
3
y
−
2
z
=
10
x - 3y - 2z = 10
x
−
3
y
−
2
z
=
10
\newline
3
x
+
2
y
+
2
z
=
14
3x + 2y + 2z = 14
3
x
+
2
y
+
2
z
=
14
\newline
2
x
−
3
y
−
2
z
=
16
2x - 3y - 2z = 16
2
x
−
3
y
−
2
z
=
16
\newline
(
_
,
_
,
_
)
(\_,\_,\_)
(
_
,
_
,
_
)
Get tutor help
Posted 9 months ago
Question
Solve the system of equations.
\newline
y
=
x
2
+
36
x
+
3
y = x^2 + 36x + 3
y
=
x
2
+
36
x
+
3
\newline
y
=
22
x
−
37
y = 22x - 37
y
=
22
x
−
37
\newline
Write the coordinates in exact form. Simplify all fractions and radicals.
\newline
(
_
,
_
)
(\_,\_)
(
_
,
_
)
\newline
(
_
,
_
)
(\_,\_)
(
_
,
_
)
Get tutor help
Posted 9 months ago
Question
Solve the system of equations.
\newline
y
=
−
x
−
24
y = -x - 24
y
=
−
x
−
24
\newline
x
2
+
y
2
=
488
x^2 + y^2 = 488
x
2
+
y
2
=
488
\newline
Write the coordinates in exact form. Simplify all fractions and radicals.
\newline
(
_
,
_
)
(\_,\_)
(
_
,
_
)
\newline
(
_
,
_
)
(\_,\_)
(
_
,
_
)
Get tutor help
Posted 9 months ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant