Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Solve the system of equations.

{:[3y+10 x-54=0],[5y-2x-34=0],[x=◻],[y=◻]:}

Solve the system of equations.\newline3y+10x54=05y2x34=0x=y= \begin{array}{l} 3 y+10 x-54=0 \\ 5 y-2 x-34=0 \\ x=\square \\ y=\square \end{array}

Full solution

Q. Solve the system of equations.\newline3y+10x54=05y2x34=0x=y= \begin{array}{l} 3 y+10 x-54=0 \\ 5 y-2 x-34=0 \\ x=\square \\ y=\square \end{array}
  1. Rearrange to solve for y: First, let's rearrange the first equation to solve for y.\newline3y=5410x3y = 54 - 10x\newliney=5410x3y = \frac{54 - 10x}{3}\newliney=18103xy = 18 - \frac{10}{3}x
  2. Substitute yy in second equation: Now, substitute yy in the second equation with the expression we found.5(18(103)x)2x=345(18 - (\frac{10}{3})x) - 2x = 34
  3. Distribute and simplify: Distribute the 55 into the parentheses.90(503)x2x=3490 - \left(\frac{50}{3}\right)x - 2x = 34
  4. Combine like terms: Combine like terms by finding a common denominator for xx.$90503x63x=34\$90 - \frac{50}{3}x - \frac{6}{3}x = 34\)90563x=3490 - \frac{56}{3}x = 34
  5. Isolate x terms: Subtract 9090 from both sides to isolate the x terms.\newline(563)x=3490-(\frac{56}{3})x = 34 - 90\newline(563)x=56-(\frac{56}{3})x = -56
  6. Solve for x: Multiply both sides by 356-\frac{3}{56} to solve for x.\newlinex=(56×356)x = (-56 \times -\frac{3}{56})\newlinex=3x = 3
  7. Substitute xx back into yy equation: Now, substitute xx back into the equation we found for yy.y=18(103)(3)y = 18 - \left(\frac{10}{3}\right)(3)
  8. Simplify y equation: Simplify the equation for yy.y=1810y = 18 - 10y=8y = 8

More problems from Solve a system of equations using elimination