Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

xtan1x(1+x2)32dx\int \frac{x\tan^{-1}x}{(1+x^{2})^{\frac{3}{2}}}dx

Full solution

Q. xtan1x(1+x2)32dx\int \frac{x\tan^{-1}x}{(1+x^{2})^{\frac{3}{2}}}dx
  1. Identify integral: Identify the integral to be solved.\newlineWe need to evaluate the integral of the function xtan1x(1+x2)32\frac{x\tan^{-1}x}{(1+x^{2})^{\frac{3}{2}}} with respect to xx.
  2. Choose substitution: Choose a substitution.\newlineLet u=tan1xu = \tan^{-1}x, which implies x=tan(u)x = \tan(u). Then, we need to find dxdx in terms of dudu.
  3. Differentiate uu: Differentiate uu with respect to xx to find dudx\frac{du}{dx}.dudx=11+x2\frac{du}{dx} = \frac{1}{1+x^2}dx=(1+x2)dudx = (1+x^2)du
  4. Substitute xx and dxdx: Substitute xx and dxdx in the integral.\newlineThe integral becomes:\newline(tan(u)u)/((1+tan2(u))3/2)(1+tan2(u))du\int(\tan(u) \cdot u) / ((1+\tan^2(u))^{3/2}) \cdot (1+\tan^2(u))\,du
  5. Simplify integral: Simplify the integral.\newlineSince 1+tan2(u)=sec2(u)1+\tan^2(u) = \sec^2(u), the integral simplifies to:\newline(tan(u)u)/(sec3(u))sec2(u)du\int(\tan(u) \cdot u) / (\sec^3(u)) \cdot \sec^2(u)du\newline(tan(u)u)/sec(u)du\int(\tan(u) \cdot u) / \sec(u)du\newline(sin(u)u)/cos2(u)du\int(\sin(u) \cdot u) / \cos^2(u)du
  6. Perform integration by parts: Perform integration by parts.\newlineLet v=uv = u and dw=sin(u)cos2(u)dudw = \frac{\sin(u)}{\cos^2(u)}du. Then we need to find dvdv and ww.\newlinedv=dudv = du\newlinew=sin(u)cos2(u)duw = \int \frac{\sin(u)}{\cos^2(u)}du
  7. Find ww: Find ww by integrating dwdw.w=sin(u)cos2(u)duw = \int \frac{\sin(u)}{\cos^2(u)}duw=sec(u)tan(u)duw = \int \sec(u)\tan(u)duw=sec(u)+Cw = \sec(u) + C
  8. Apply integration by parts: Apply integration by parts using the formula udv=uvvdu\int u\,dv = uv - \int v\,du.sin(u)ucos2(u)du=uvvdu\int\frac{\sin(u) \cdot u}{\cos^2(u)}\,du = uv - \int v\,du= u \cdot \sec(u) - \int \sec(u)\,du= u \cdot \sec(u) - \ln|\sec(u) + \tan(u)| + C
  9. Substitute back xx: Substitute back the original variable xx.
    u=tan1xu = \tan^{-1}x, sec(u)=1+x2\sec(u) = \sqrt{1+x^2}, tan(u)=x\tan(u) = x
    The integral becomes:
    tan1x1+x2ln1+x2+x+C\tan^{-1}x \cdot \sqrt{1+x^2} - \ln|\sqrt{1+x^2} + x| + C

More problems from Evaluate definite integrals using the chain rule