Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[g(x)=int_(-10)^(x)(10-3t)dt],[g^(')(-4)=]:}

g(x)=10x(103t)dtg(4)= \begin{array}{l}g(x)=\int_{-10}^{x}(10-3 t) d t \\ g^{\prime}(-4)=\end{array}

Full solution

Q. g(x)=10x(103t)dtg(4)= \begin{array}{l}g(x)=\int_{-10}^{x}(10-3 t) d t \\ g^{\prime}(-4)=\end{array}
  1. Find Derivative of \newlineg(x)g(x): First, we need to find the derivative of \newlineg(x)g(x) using the Fundamental Theorem of Calculus, which tells us that if \newlineg(x)g(x) is defined as an integral from a constant to \newlinexx, then \newlineg(x)g'(x) is the integrand evaluated at \newlinexx.
  2. Calculate g(x)g'(x): So, g(x)=103xg'(x) = 10 - 3x.
  3. Evaluate g(4)g'(-4): Now we just plug in x=4x = -4 into g(x)g'(x) to find g(4)g'(-4).\newlineg(4)=103(4)=10+12=22g'(-4) = 10 - 3(-4) = 10 + 12 = 22.

More problems from Evaluate definite integrals using the chain rule