Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[F(x)=int_(0)^(sqrtx)t^(2)dt],[F^(')(x)=]:}

F(x)=0xt2dtF(x)= \begin{array}{l}F(x)=\int_{0}^{\sqrt{x}} t^{2} d t \\ F^{\prime}(x)=\end{array}

Full solution

Q. F(x)=0xt2dtF(x)= \begin{array}{l}F(x)=\int_{0}^{\sqrt{x}} t^{2} d t \\ F^{\prime}(x)=\end{array}
  1. Apply Fundamental Theorem of Calculus: We need to use the Fundamental Theorem of Calculus to find F(x)F'(x), which tells us that if F(x)F(x) is defined as an integral from aa to xx of f(t)dtf(t)\,dt, then F(x)=f(x)F'(x) = f(x).
  2. Define F(x)F(x) and f(t)f(t): F(x)=0xt2dtF(x) = \int_{0}^{\sqrt{x}}t^{2}\,dt, so f(t)=t2f(t) = t^2. To find F(x)F'(x), we replace tt with x\sqrt{x} in f(t)f(t).
  3. Calculate F(x)F'(x): F(x)=(x)2=xF'(x) = (\sqrt{x})^2 = x.

More problems from Evaluate definite integrals using the chain rule