Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

(dy)/(dx)=6x and 
y(2)=8.

y(4)=

dydx=6x \frac{d y}{d x}=6 x and y(2)=8 y(2)=8 .\newliney(4)= y(4)=

Full solution

Q. dydx=6x \frac{d y}{d x}=6 x and y(2)=8 y(2)=8 .\newliney(4)= y(4)=
  1. Integrate 6x6x with respect to xx: We know that dydx=6x\frac{dy}{dx} = 6x is the derivative of yy with respect to xx. To find y(x)y(x), we need to integrate 6x6x with respect to xx.\newlineCalculation: 6xdx=3x2+C\int 6x \, dx = 3x^2 + C
  2. Find constant CC: We have the initial condition y(2)=8y(2) = 8. We can use this to find the constant CC.\newlineCalculation: 8=3(2)2+C8 = 3(2)^2 + C\newline8=12+C8 = 12 + C\newlineC=812C = 8 - 12\newlineC=4C = -4
  3. Calculate y(4)y(4): Now we have the function y(x)=3x24y(x) = 3x^2 - 4. We can use this to find y(4)y(4).\newlineCalculation: y(4)=3(4)24y(4) = 3(4)^2 - 4\newliney(4)=3(16)4y(4) = 3(16) - 4\newliney(4)=484y(4) = 48 - 4\newliney(4)=44y(4) = 44

More problems from Evaluate functions