Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

1938yamp;=76x24xamp;=6(2y1)\begin{aligned} 19-38y&=76x \newline24x&=-6(2y-1)\end{aligned}

Full solution

Q. 1938y=76x24x=6(2y1)\begin{aligned} 19-38y&=76x \newline24x&=-6(2y-1)\end{aligned}
  1. Equation 11 Solution: We have the system of equations:\newline11) 1938y=76x 19 - 38y = 76x \newline22) 24x=6(2y1) 24x = -6(2y - 1) \newlineLet's solve the first equation for x:\newline76x=1938y 76x = 19 - 38y \newlineDivide both sides by 7676 to isolate x:\newlinex=1938y76 x = \frac{19 - 38y}{76} \newlineSimplify the fraction:\newlinex=12y4 x = \frac{1 - 2y}{4}
  2. Equation 22 Solution: Now let's solve the second equation for x:\newline24x=6(2y1) 24x = -6(2y - 1) \newlineDivide both sides by 2424:\newlinex=6(2y1)24 x = \frac{-6(2y - 1)}{24} \newlineSimplify the fraction by dividing both numerator and denominator by 66:\newlinex=1(2y1)4 x = \frac{-1(2y - 1)}{4} \newlinex=2y+14 x = \frac{-2y + 1}{4}
  3. Combine Equations: We have two expressions for x:\newline11) x=12y4 x = \frac{1 - 2y}{4} \newline22) x=2y+14 x = \frac{-2y + 1}{4} \newlineSince both expressions are equal to x, we can set them equal to each other:\newline12y4=2y+14 \frac{1 - 2y}{4} = \frac{-2y + 1}{4} \newlineSince the denominators are the same, we can equate the numerators:\newline12y=2y+1 1 - 2y = -2y + 1 \newlineThis simplifies to:\newline0=0 0 = 0 \newlineThis indicates that the two equations are actually the same line, and therefore, there are infinitely many solutions (the system is dependent).

More problems from Evaluate definite integrals using the chain rule