Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Calculus
Find derivatives of radical functions
Find the derivative of the following function.
\newline
y
=
ln
(
5
x
2
+
x
)
y=\ln \left(5 x^{2}+x\right)
y
=
ln
(
5
x
2
+
x
)
\newline
Answer:
y
′
=
y^{\prime}=
y
′
=
Get tutor help
Find the derivative of the following function.
\newline
y
=
ln
(
2
x
3
−
9
x
2
)
y=\ln \left(2 x^{3}-9 x^{2}\right)
y
=
ln
(
2
x
3
−
9
x
2
)
\newline
Answer:
y
′
=
y^{\prime}=
y
′
=
Get tutor help
Find the derivative of the following function.
\newline
y
=
ln
(
x
6
−
8
x
5
)
y=\ln \left(x^{6}-8 x^{5}\right)
y
=
ln
(
x
6
−
8
x
5
)
\newline
Answer:
y
′
=
y^{\prime}=
y
′
=
Get tutor help
Find the derivative of the following function.
\newline
y
=
ln
(
4
x
2
)
y=\ln \left(4 x^{2}\right)
y
=
ln
(
4
x
2
)
\newline
Answer:
y
′
=
y^{\prime}=
y
′
=
Get tutor help
Find the derivative of the following function.
\newline
y
=
ln
(
−
2
x
5
+
x
4
)
y=\ln \left(-2 x^{5}+x^{4}\right)
y
=
ln
(
−
2
x
5
+
x
4
)
\newline
Answer:
y
′
=
y^{\prime}=
y
′
=
Get tutor help
Find the derivative of the following function.
\newline
y
=
ln
(
8
x
3
)
y=\ln \left(8 x^{3}\right)
y
=
ln
(
8
x
3
)
\newline
Answer:
y
′
=
y^{\prime}=
y
′
=
Get tutor help
Find the derivative of the following function.
\newline
y
=
ln
(
3
x
4
)
y=\ln \left(3 x^{4}\right)
y
=
ln
(
3
x
4
)
\newline
Answer:
y
′
=
y^{\prime}=
y
′
=
Get tutor help
Find the derivative of the following function.
\newline
y
=
ln
(
9
x
2
)
y=\ln \left(9 x^{2}\right)
y
=
ln
(
9
x
2
)
\newline
Answer:
y
′
=
y^{\prime}=
y
′
=
Get tutor help
Find the derivative of the following function.
\newline
y
=
ln
(
4
x
6
)
y=\ln \left(4 x^{6}\right)
y
=
ln
(
4
x
6
)
\newline
Answer:
y
′
=
y^{\prime}=
y
′
=
Get tutor help
Find the derivative of the following function.
\newline
y
=
ln
(
2
x
6
)
y=\ln \left(2 x^{6}\right)
y
=
ln
(
2
x
6
)
\newline
Answer:
y
′
=
y^{\prime}=
y
′
=
Get tutor help
Find the derivative of
f
(
x
)
f(x)
f
(
x
)
.
\newline
f
(
x
)
=
x
+
3
f(x) = \sqrt{x+3}
f
(
x
)
=
x
+
3
\newline
f
′
(
x
)
=
f'(x) =
f
′
(
x
)
=
______
Get tutor help
Previous
1
2