Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the derivative of the following function.

y=ln(-2x^(5)+x^(4))
Answer: 
y^(')=

Find the derivative of the following function.\newliney=ln(2x5+x4) y=\ln \left(-2 x^{5}+x^{4}\right) \newlineAnswer: y= y^{\prime}=

Full solution

Q. Find the derivative of the following function.\newliney=ln(2x5+x4) y=\ln \left(-2 x^{5}+x^{4}\right) \newlineAnswer: y= y^{\prime}=
  1. Identify function: Identify the function to differentiate.\newlineThe function given is y=ln(2x5+x4)y = \ln(-2x^5 + x^4). We need to find the derivative of this function with respect to xx.
  2. Apply chain rule: Apply the chain rule for differentiation.\newlineThe chain rule states that the derivative of a composite function is the derivative of the outer function evaluated at the inner function times the derivative of the inner function. In this case, the outer function is ln(u)\ln(u) and the inner function is u=2x5+x4u = -2x^5 + x^4.
  3. Differentiate outer function: Differentiate the outer function.\newlineThe derivative of ln(u)\ln(u) with respect to uu is 1u\frac{1}{u}. So, if y=ln(u)y = \ln(u), then dydu=1u\frac{dy}{du} = \frac{1}{u}.
  4. Differentiate inner function: Differentiate the inner function.\newlineThe inner function is u=2x5+x4u = -2x^5 + x^4. We need to find dudx\frac{du}{dx}.\newlinedudx=ddx(2x5)+ddx(x4)\frac{du}{dx} = \frac{d}{dx}(-2x^5) + \frac{d}{dx}(x^4)\newlinedudx=10x4+4x3\frac{du}{dx} = -10x^4 + 4x^3
  5. Apply chain rule: Apply the chain rule.\newlineNow we combine the derivatives from Step 33 and Step 44 using the chain rule.\newlinedydx=dydududx\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}\newlinedydx=(1u)(10x4+4x3)\frac{dy}{dx} = \left(\frac{1}{u}\right) \cdot (-10x^4 + 4x^3)
  6. Substitute back: Substitute the inner function back into the derivative.\newlineWe substitute u=2x5+x4u = -2x^5 + x^4 back into the derivative we found in Step 55.\newlinedydx=1(2x5+x4)×(10x4+4x3)\frac{dy}{dx} = \frac{1}{(-2x^5 + x^4)} \times (-10x^4 + 4x^3)
  7. Simplify expression: Simplify the expression.\newlineWe can now simplify the expression to find the final derivative.\newlinedydx=10x4+4x32x5+x4\frac{dy}{dx} = \frac{-10x^4 + 4x^3}{-2x^5 + x^4}

More problems from Find derivatives of radical functions