Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Algebra 1
Powers with decimal and fractional bases
Divide the polynomials. Your answer should be in the form
p
(
x
)
+
k
x
p(x)+\frac{k}{x}
p
(
x
)
+
x
k
where
p
p
p
is a polynomial and
k
k
k
is an integer.
\newline
x
4
+
2
x
2
−
5
x
=
□
\frac{x^{4}+2 x^{2}-5}{x}=\square
x
x
4
+
2
x
2
−
5
=
□
Get tutor help
Divide the polynomials.
\newline
The form of your answer should either be
p
(
x
)
p(x)
p
(
x
)
or
p
(
x
)
+
k
x
+
1
p(x)+\frac{k}{x+1}
p
(
x
)
+
x
+
1
k
where
p
(
x
)
p(x)
p
(
x
)
is a polynomial and
k
k
k
is an integer.
\newline
3
x
3
+
x
−
11
x
+
1
=
□
\frac{3 x^{3}+x-11}{x+1}=\square
x
+
1
3
x
3
+
x
−
11
=
□
Get tutor help
Divide the polynomials.
\newline
The form of your answer should either be
p
(
x
)
p(x)
p
(
x
)
or
p
(
x
)
+
k
x
−
5
p(x)+\frac{k}{x-5}
p
(
x
)
+
x
−
5
k
where
p
(
x
)
p(x)
p
(
x
)
is a polynomial and
k
k
k
is an integer.
\newline
2
x
3
−
11
x
2
+
25
x
−
5
=
\frac{2 x^{3}-11 x^{2}+25}{x-5}=
x
−
5
2
x
3
−
11
x
2
+
25
=
Get tutor help
Divide the polynomials.
\newline
The form of your answer should either be
p
(
x
)
p(x)
p
(
x
)
or
p
(
x
)
+
k
x
+
2
p(x)+\frac{k}{x+2}
p
(
x
)
+
x
+
2
k
where
p
(
x
)
p(x)
p
(
x
)
is a polynomial and
k
k
k
is an integer.
\newline
3
x
3
+
x
2
−
4
x
+
12
x
+
2
=
\frac{3 x^{3}+x^{2}-4 x+12}{x+2}=
x
+
2
3
x
3
+
x
2
−
4
x
+
12
=
Get tutor help
Divide the polynomials.
\newline
The form of your answer should either be
p
(
x
)
p(x)
p
(
x
)
or
p
(
x
)
+
k
x
−
5
p(x)+\frac{k}{x-5}
p
(
x
)
+
x
−
5
k
where
p
(
x
)
p(x)
p
(
x
)
is a polynomial and
k
k
k
is an integer.
\newline
5
x
3
−
22
x
2
−
17
x
+
11
x
−
5
=
\frac{5 x^{3}-22 x^{2}-17 x+11}{x-5}=
x
−
5
5
x
3
−
22
x
2
−
17
x
+
11
=
Get tutor help
Divide the polynomials.
\newline
The form of your answer should either be
p
(
x
)
p(x)
p
(
x
)
or
p
(
x
)
+
k
x
+
3
p(x)+\frac{k}{x+3}
p
(
x
)
+
x
+
3
k
where
p
(
x
)
p(x)
p
(
x
)
is a polynomial and
k
k
k
is an integer.
\newline
2
x
3
−
x
2
−
25
x
−
12
x
+
3
=
\frac{2 x^{3}-x^{2}-25 x-12}{x+3}=
x
+
3
2
x
3
−
x
2
−
25
x
−
12
=
Get tutor help
Divide the polynomials.
\newline
The form of your answer should either be
p
(
x
)
p(x)
p
(
x
)
or
p
(
x
)
+
k
x
−
3
p(x)+\frac{k}{x-3}
p
(
x
)
+
x
−
3
k
where
p
(
x
)
p(x)
p
(
x
)
is a polynomial and
k
k
k
is an integer.
\newline
x
3
−
4
x
−
15
x
−
3
=
□
\frac{x^{3}-4 x-15}{x-3}=\square
x
−
3
x
3
−
4
x
−
15
=
□
Get tutor help
Divide the polynomials.
\newline
The form of your answer should either be
p
(
x
)
p(x)
p
(
x
)
or
p
(
x
)
+
k
x
+
3
p(x)+\frac{k}{x+3}
p
(
x
)
+
x
+
3
k
where
p
(
x
)
p(x)
p
(
x
)
is a polynomial and
k
k
k
is an integer.
\newline
2
x
3
−
x
2
−
12
x
+
3
=
\frac{2 x^{3}-x^{2}-12}{x+3}=
x
+
3
2
x
3
−
x
2
−
12
=
Get tutor help
Divide the polynomials. Your answer should be in the form
p
(
x
)
+
k
x
p(x)+\frac{k}{x}
p
(
x
)
+
x
k
where
p
p
p
is a polynomial and
k
k
k
is an integer.
\newline
5
x
2
+
x
+
7
x
=
□
\frac{5 x^{2}+x+7}{x}=\square
x
5
x
2
+
x
+
7
=
□
Get tutor help
Divide the polynomials.
\newline
Your answer should be in the form
p
(
x
)
+
k
x
p(x)+\frac{k}{x}
p
(
x
)
+
x
k
where
p
p
p
is a polynomial and
k
k
k
is an integer.
\newline
4
x
3
−
3
x
+
1
x
=
\frac{4 x^{3}-3 x+1}{x}=
x
4
x
3
−
3
x
+
1
=
Get tutor help
Rewrite the function by completing the square.
\newline
h
(
x
)
=
4
x
2
−
36
x
+
81
h
(
x
)
=
□
(
x
+
□
)
2
+
□
\begin{array}{l} h(x)=4 x^{2}-36 x+81 \\ h(x)=\square(x+\square)^{2}+\square \end{array}
h
(
x
)
=
4
x
2
−
36
x
+
81
h
(
x
)
=
□
(
x
+
□
)
2
+
□
Get tutor help
Evaluate. Write your answer as a whole number or as a simplified fraction.
\newline
6
7
6
5
=
\frac{6^7}{6^5}=
6
5
6
7
=
_____
Get tutor help
Evaluate. Write your answer as a fraction or whole number.
\newline
(
1
4
)
4
(\frac{1}{4})^4
(
4
1
)
4
= _____
Get tutor help
Previous
1
2
3