Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Rewrite the function by completing the square.

{:[h(x)=4x^(2)-36 x+81],[h(x)=◻(x+◻)^(2)+◻]:}

Rewrite the function by completing the square.\newlineh(x)=4x236x+81h(x)=(x+)2+ \begin{array}{l} h(x)=4 x^{2}-36 x+81 \\ h(x)=\square(x+\square)^{2}+\square \end{array}

Full solution

Q. Rewrite the function by completing the square.\newlineh(x)=4x236x+81h(x)=(x+)2+ \begin{array}{l} h(x)=4 x^{2}-36 x+81 \\ h(x)=\square(x+\square)^{2}+\square \end{array}
  1. Identify quadratic function: Identify the quadratic function to be rewritten. h(x)=4x236x+81h(x) = 4x^2 - 36x + 81
  2. Factor out coefficient of x22: Factor out the coefficient of x22 from the first two terms.\newlineh(x) = 44(x22 - 99x) + 8181
  3. Find value to complete the square: Find the value to complete the square. This is (b2)2(\frac{b}{2})^2, where bb is the coefficient of xx in the parentheses.\newlineFor x29xx^2 - 9x, b=9b = -9, so (b2)2=(92)2=814(\frac{b}{2})^2 = (\frac{-9}{2})^2 = \frac{81}{4}.
  4. Add and subtract to complete the square: Add and subtract the value found in the previous step inside the parentheses to complete the square.\newlineh(x)=4(x29x+814814)+81h(x) = 4(x^2 - 9x + \frac{81}{4} - \frac{81}{4}) + 81
  5. Rewrite trinomial as perfect square: Rewrite the trinomial as a perfect square and simplify the expression.\newlineh(x)=4((x92)2814)+81h(x) = 4\left(\left(x - \frac{9}{2}\right)^2 - \frac{81}{4}\right) + 81
  6. Distribute and combine like terms: Distribute the 44 into the parentheses and combine like terms.\newlineh(x)=4(x92)24(814)+81h(x) = 4(x - \frac{9}{2})^2 - 4(\frac{81}{4}) + 81\newlineh(x)=4(x92)281+81h(x) = 4(x - \frac{9}{2})^2 - 81 + 81
  7. Simplify constant terms: Simplify the constant terms.\newlineh(x)=4(x92)2+0h(x) = 4(x - \frac{9}{2})^2 + 0\newlineh(x)=4(x92)2h(x) = 4(x - \frac{9}{2})^2