Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

z=44 i-32
What are the real and imaginary parts of 
z ?
Choose 1 answer:
(A)

{:[Re(z)=44" and "],[Im(z)=-32]:}
(B)

{:[Re(z)=-32" and "],[Im(z)=44 i]:}
(c)

{:[Re(z)=44 i" and "],[Im(z)=-32]:}
(D)

{:[Re(z)=-32" and "],[Im(z)=44]:}

z=44i32 z=44 i-32 \newlineWhat are the real and imaginary parts of z z ?\newlineChoose 11 answer:\newline(A)\newlineRe(z)=44 and Im(z)=32 \begin{array}{l} \operatorname{Re}(z)=44 \text { and } \\ \operatorname{Im}(z)=-32 \end{array} \newline(B)\newlineRe(z)=32 and Im(z)=44i \begin{array}{l} \operatorname{Re}(z)=-32 \text { and } \\ \operatorname{Im}(z)=44 i \end{array} \newline(C)\newlineRe(z)=44i and Im(z)=32 \begin{array}{l} \operatorname{Re}(z)=44 i \text { and } \\ \operatorname{Im}(z)=-32 \end{array} \newline(D)\newlineRe(z)=32 and Im(z)=44 \begin{array}{l} \operatorname{Re}(z)=-32 \text { and } \\ \operatorname{Im}(z)=44 \end{array}

Full solution

Q. z=44i32 z=44 i-32 \newlineWhat are the real and imaginary parts of z z ?\newlineChoose 11 answer:\newline(A)\newlineRe(z)=44 and Im(z)=32 \begin{array}{l} \operatorname{Re}(z)=44 \text { and } \\ \operatorname{Im}(z)=-32 \end{array} \newline(B)\newlineRe(z)=32 and Im(z)=44i \begin{array}{l} \operatorname{Re}(z)=-32 \text { and } \\ \operatorname{Im}(z)=44 i \end{array} \newline(C)\newlineRe(z)=44i and Im(z)=32 \begin{array}{l} \operatorname{Re}(z)=44 i \text { and } \\ \operatorname{Im}(z)=-32 \end{array} \newline(D)\newlineRe(z)=32 and Im(z)=44 \begin{array}{l} \operatorname{Re}(z)=-32 \text { and } \\ \operatorname{Im}(z)=44 \end{array}
  1. Identify standard form: Identify the standard form of a complex number.\newlineA complex number is generally written in the form z=a+biz = a + bi, where aa is the real part and bibi is the imaginary part, with ii being the imaginary unit.
  2. Compare to standard form: Compare the given complex number to the standard form.\newlineThe given complex number is z=4432i z = 44 - 32i . This can be compared to the standard form a+bi a + bi .
  3. Identify real and imaginary parts: Identify the real and imaginary parts of the given complex number.\newlineFrom the given complex number z=4432iz = 44 - 32i, we can see that the real part is 4444 and the imaginary part is 32i-32i.
  4. Choose correct answer: Choose the correct answer based on the identified real and imaginary parts.\newlineThe real part is 4444, and the imaginary part is 32-32 (without the imaginary unit ii). Therefore, the correct answer is:\newlineRe(z)=44\text{Re}(z) = 44 and Im(z)=32\text{Im}(z) = -32.

More problems from Interpret parts of quadratic expressions: word problems