Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the amplitude of

g(x)=-2sin((pi)/(2)x-3)+5?
units

What is the amplitude of\newlineg(x)=2sin(π2x3)+5? g(x)=-2 \sin \left(\frac{\pi}{2} x-3\right)+5 ? \newlineunits

Full solution

Q. What is the amplitude of\newlineg(x)=2sin(π2x3)+5? g(x)=-2 \sin \left(\frac{\pi}{2} x-3\right)+5 ? \newlineunits
  1. Identify standard form: Identify the standard form of a sine function.\newlineThe standard form of a sine function is y=Asin(BxC)+Dy = A\sin(Bx - C) + D, where AA is the amplitude, BB affects the period, CC is the phase shift, and DD is the vertical shift.
  2. Compare given function: Compare the given function to the standard form.\newlineThe given function is g(x)=2sin(π2x3)+5g(x) = -2\sin\left(\frac{\pi}{2}x - 3\right) + 5. Here, A=2A = -2, B=π2B = \frac{\pi}{2}, C=3C = 3, and D=5D = 5.
  3. Determine amplitude: Determine the amplitude.\newlineThe amplitude is the absolute value of AA. In this case, A=2A = -2, so the amplitude is A=2=2|A| = |-2| = 2.
  4. Check for errors: Check for any mathematical errors.\newlineThere are no mathematical errors in the previous steps.

More problems from Domain and range of quadratic functions: equations