Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

<ByteTex data-text="The function \( h \) is defined over the real numbers. This table gives a few values of \( h \).\(\newline\)\begin{tabular}{lllll}\(\newline\)\( x \) & \(-6\).\(1\) & \(-6\).\(01\) & \(-6\).\(001\) & \(-5\).\(9\) \\\(\newline\)\hline\( h(x) \) & \(-0\).\(25\) & \(-0\).\(74\) & \(-0\).\(98\) & \(-1\).\(0\)\(\newline\)\end{tabular}\(\newline\)What is a reasonable estimate for \( \lim _{x \rightarrow-6} h(x) \) ?\(\newline\)Choose \(1\) answer:\(\newline\)(A) \(-6\)\(\newline\)(B) \(-2\)\(\newline\)(C) \(-1\)\(\newline\)(D) The limit doesn't exist"></ByteTex>

The function h h is defined over the real numbers. This table gives a few values of h h .\newline\begin{tabular}{lllll}\newlinex x & 6-6.11 & 6-6.0101 & 6-6.001001 & 5-5.99 \\\newline\hlineh(x) h(x) & 0-0.2525 & 0-0.7474 & 0-0.9898 & 1-1.00\newline\end{tabular}\newlineWhat is a reasonable estimate for limx6h(x) \lim _{x \rightarrow-6} h(x) ?\newlineChoose 11 answer:\newline(A) 6-6\newline(B) 2-2\newline(C) 1-1\newline(D) The limit doesn't exist

Full solution

Just a sec, we’re working out the solution to your problem...

Bytelearn - Loading gif

More problems from Domain and range of quadratic functions: equations