Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

y^((1)/(2))*root(3)(16x^(2)y^((3)/(2))+8y^(2))
Which of the following expressions is equivalent to the given expression assuming 
y >= 0 ?
Choose 1 answer:
(A) 
2yroot(3)(2x^(2)+y^((1)/(2)))
(B) 
root(3)(24x^(2)y^((7)/(2)))*y^((1)/(2))
(C) 
yroot(3)(16x^(2))+2y^((7)/(6))
(D) 
root(3)(16x^(2)y^(2)+8y^((5)/(2)))

y1216x2y32+8y23 y^{\frac{1}{2}} \cdot \sqrt[3]{16 x^{2} y^{\frac{3}{2}}+8 y^{2}} \newlineWhich of the following expressions is equivalent to the given expression assuming y0 y \geq 0 ?\newlineChoose 11 answer:\newline(A) 2y2x2+y123 2 y \sqrt[3]{2 x^{2}+y^{\frac{1}{2}}} \newline(B) 24x2y723y12 \sqrt[3]{24 x^{2} y^{\frac{7}{2}}} \cdot y^{\frac{1}{2}} \newline(C) y16x23+2y76 y \sqrt[3]{16 x^{2}}+2 y^{\frac{7}{6}} \newline(D) 16x2y2+8y523 \sqrt[3]{16 x^{2} y^{2}+8 y^{\frac{5}{2}}}

Full solution

Q. y1216x2y32+8y23 y^{\frac{1}{2}} \cdot \sqrt[3]{16 x^{2} y^{\frac{3}{2}}+8 y^{2}} \newlineWhich of the following expressions is equivalent to the given expression assuming y0 y \geq 0 ?\newlineChoose 11 answer:\newline(A) 2y2x2+y123 2 y \sqrt[3]{2 x^{2}+y^{\frac{1}{2}}} \newline(B) 24x2y723y12 \sqrt[3]{24 x^{2} y^{\frac{7}{2}}} \cdot y^{\frac{1}{2}} \newline(C) y16x23+2y76 y \sqrt[3]{16 x^{2}}+2 y^{\frac{7}{6}} \newline(D) 16x2y2+8y523 \sqrt[3]{16 x^{2} y^{2}+8 y^{\frac{5}{2}}}
  1. Step 11: Taking y(1/2)y^{(1/2)} inside the cube root: We have the expression y(1/2)16x2y(3/2)+8y23y^{(1/2)}\sqrt[3]{16x^{2}y^{(3/2)}+8y^{2}}. Let's simplify it step by step.\newlineFirst, we can take y(1/2)y^{(1/2)} inside the cube root as a factor of yy, because when we multiply exponents with the same base, we add the exponents.
  2. Step 22: Combining y terms inside the cube root: Inside the cube root, we will have y(1233)=y(36)=y(12)y^{(\frac{1}{2} \cdot \frac{3}{3})} = y^{(\frac{3}{6})} = y^{(\frac{1}{2})}. So, we can combine this with the y terms inside the cube root.\newlineThe expression inside the cube root becomes 16x2y(32+12)+8y(2+12)16x^{2}y^{(\frac{3}{2} + \frac{1}{2})} + 8y^{(2 + \frac{1}{2})}.
  3. Step 33: Simplifying the exponents: Now, we simplify the exponents: y(32)+(12)=y(42)=y2y^{(\frac{3}{2}) + (\frac{1}{2})} = y^{(\frac{4}{2})} = y^2 and y(2)+(12)=y(52)y^{(2) + (\frac{1}{2})} = y^{(\frac{5}{2})}. So, the expression inside the cube root is now 16x2y2+8y(52)16x^{2}y^2 + 8y^{(\frac{5}{2})}.
  4. Step 44: Factoring out a common term: We can factor out a 8y28y^2 from both terms inside the cube root to simplify the expression further.\newlineThe expression becomes y(12)8y2(2x2+y(12))3y^{\left(\frac{1}{2}\right)}\sqrt[3]{8y^2(2x^{2} + y^{\left(\frac{1}{2}\right)})}.
  5. Step 55: Taking the common term outside the cube root: Now, we can take the factor of 8y28y^2 outside the cube root, remembering that when we take a term outside of a cube root, we divide its exponent by 33.\newlineSo, 8y28y^2 becomes 2y(2/3)2y^{(2/3)} outside the cube root.
  6. Step 66: Combining y terms: The expression now is 2y(2/3)y(1/2)2x2+y(1/2)32y^{(2/3)} \cdot y^{(1/2)} \cdot \sqrt[3]{2x^2 + y^{(1/2)}}.\newlineWe need to combine the y terms by adding their exponents: y(2/3)y(1/2)=y(2/3)+(3/6)=y(2/3)+(1/2)y^{(2/3)} \cdot y^{(1/2)} = y^{(2/3) + (3/6)} = y^{(2/3) + (1/2)}.
  7. Step 77: Final simplification: Simplify the exponents: y(23)+(12)=y(46)+(36)=y(76)y^{\left(\frac{2}{3}\right) + \left(\frac{1}{2}\right)} = y^{\left(\frac{4}{6}\right) + \left(\frac{3}{6}\right)} = y^{\left(\frac{7}{6}\right)}.\newlineSo, the final expression is 2y(76)2x2+y(12)32y^{\left(\frac{7}{6}\right)}\sqrt[3]{2x^{2} + y^{\left(\frac{1}{2}\right)}}.
  8. Step 88: Matching with the answer choices: Looking at the answer choices, we see that this matches with option (A).\newlineSo, the equivalent expression is 2y(76)2x2+y(12)32y^{(\frac{7}{6})}\sqrt[3]{2x^{2} + y^{(\frac{1}{2})}}.

More problems from Compare linear and exponential growth