Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The functions u(x) u(x) and v(x) v(x) are differentiable. \newlineThe function w(x) w(x) is defined as: w(x)=u(x)v(x) w(x)= \frac{u(x)}{v(x)} \newlineIf u(5)=3 u(5)= 3 , u(5)=2 u'(5)= -2 , v(5)=7 v(5)= 7 , and v(5)=1 v'(5)= 1 , what is w(5) w'(5) ? \newlineSimplify any fractions. \newlinew(5)= w'(5)= _____

Full solution

Q. The functions u(x) u(x) and v(x) v(x) are differentiable. \newlineThe function w(x) w(x) is defined as: w(x)=u(x)v(x) w(x)= \frac{u(x)}{v(x)} \newlineIf u(5)=3 u(5)= 3 , u(5)=2 u'(5)= -2 , v(5)=7 v(5)= 7 , and v(5)=1 v'(5)= 1 , what is w(5) w'(5) ? \newlineSimplify any fractions. \newlinew(5)= w'(5)= _____
  1. Identify the rule: Identify the rule for differentiating a quotient.\newlineThe quotient rule for differentiation states that if w(x)=u(x)v(x)w(x) = \frac{u(x)}{v(x)}, then w(x)=v(x)u(x)u(x)v(x)(v(x))2w'(x) = \frac{v(x)u'(x) - u(x)v'(x)}{(v(x))^2}.
  2. Apply the quotient rule: Apply the quotient rule using the given values.\newlineWe have u(5)=3u(5) = 3, u(5)=2u'(5) = -2, v(5)=7v(5) = 7, and v(5)=1v'(5) = 1. Using the quotient rule, we get:\newlinew(5)=v(5)u(5)u(5)v(5)(v(5))2w'(5) = \frac{v(5)u'(5) - u(5)v'(5)}{(v(5))^2}\newlinew(5)=7(2)3172w'(5) = \frac{7 \cdot (-2) - 3 \cdot 1}{7^2}
  3. Perform the calculations: Perform the calculations.\newlinew(5)=14349w'(5) = \frac{{-14 - 3}}{{49}}\newlinew(5)=1749w'(5) = \frac{{-17}}{{49}}

More problems from Compare linear and exponential growth