The functions f(x) and g(x) are differentiable. The function h(x) is defined as: h(x)=f(x)g(x)If f(8)=1, f′(8)=−6, g(8)=8, and g′(8)=−10, what is h′(8)? Simplify any fractions. h′(8)= ______
Q. The functions f(x) and g(x) are differentiable. The function h(x) is defined as: h(x)=f(x)g(x)If f(8)=1, f′(8)=−6, g(8)=8, and g′(8)=−10, what is h′(8)? Simplify any fractions. h′(8)= ______
Apply Quotient Rule: Apply the quotient rule to find h′(x). The quotient rule states that if h(x)=f(x)g(x), then h′(x)=(f(x))2f(x)g′(x)−g(x)f′(x).
Substitute Given Values: Substitute the given values into the quotient rule formula.We have f(8)=1, f′(8)=−6, g(8)=8, and g′(8)=−10.So, h′(8)=(1×−10−8×−6)/(1)2.
Perform Calculations: Perform the calculations.h′(8)=(−10+48)/1.h′(8)=38/1.h′(8)=38.
More problems from Compare linear and exponential growth