Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The functions p(x) p(x) and q(x) q(x) are differentiable. \newlineThe function r(x) r(x) is defined as: r(x)=p(x)q(x) r(x)= \frac{p(x)}{q(x)} \newlineIf p(3)=2 p(3)= 2 , p(3)=4 p'(3)= 4 , q(3)=6 q(3)= 6 , and q(3)=9 q'(3)= 9 , what is r(3) r'(3) ? \newlineSimplify any fractions. \newliner(3)= r'(3)= _____

Full solution

Q. The functions p(x) p(x) and q(x) q(x) are differentiable. \newlineThe function r(x) r(x) is defined as: r(x)=p(x)q(x) r(x)= \frac{p(x)}{q(x)} \newlineIf p(3)=2 p(3)= 2 , p(3)=4 p'(3)= 4 , q(3)=6 q(3)= 6 , and q(3)=9 q'(3)= 9 , what is r(3) r'(3) ? \newlineSimplify any fractions. \newliner(3)= r'(3)= _____
  1. Given function: We are given the function r(x)=p(x)q(x)r(x) = \frac{p(x)}{q(x)} and we need to find the derivative of rr at x=3x = 3, denoted as r(3)r'(3). To do this, we will use the quotient rule for derivatives, which states that if r(x)=p(x)q(x)r(x) = \frac{p(x)}{q(x)}, then r(x)=p(x)q(x)p(x)q(x)(q(x))2r'(x) = \frac{p'(x)q(x) - p(x)q'(x)}{(q(x))^2}.
  2. Quotient rule for derivatives: We have the values p(3)=2p(3) = 2, p(3)=4p'(3) = 4, q(3)=6q(3) = 6, and q(3)=9q'(3) = 9. Let's plug these values into the quotient rule formula to find r(3)r'(3).\newliner(3)=p(3)q(3)p(3)q(3)(q(3))2r'(3) = \frac{p'(3)q(3) - p(3)q'(3)}{(q(3))^2}\newliner(3)=462962r'(3) = \frac{4 \cdot 6 - 2 \cdot 9}{6^2}
  3. Plugging in values: Now, let's perform the calculations:\newliner'(33) = 241836\frac{24 - 18}{36}\newliner'(33) = 636\frac{6}{36}\newliner'(33) = 16\frac{1}{6}

More problems from Compare linear and exponential growth