Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The functions m(x) m(x) and n(x) n(x) are differentiable. \newlineThe function o(x) o(x) is defined as: o(x)=m(x)n(x) o(x)= \frac{m(x)}{n(x)} \newlineIf m(7)=2 m(7)= 2 , m(7)=1 m'(7)= -1 , n(7)=4 n(7)= 4 , and n(7)=8 n'(7)= 8 , what is o(7) o'(7) ? \newlineSimplify any fractions. \newlineo(7)= o'(7)= _____

Full solution

Q. The functions m(x) m(x) and n(x) n(x) are differentiable. \newlineThe function o(x) o(x) is defined as: o(x)=m(x)n(x) o(x)= \frac{m(x)}{n(x)} \newlineIf m(7)=2 m(7)= 2 , m(7)=1 m'(7)= -1 , n(7)=4 n(7)= 4 , and n(7)=8 n'(7)= 8 , what is o(7) o'(7) ? \newlineSimplify any fractions. \newlineo(7)= o'(7)= _____
  1. Identify Rule: Identify the rule for differentiating a quotient.\newlineThe quotient rule for differentiation states that if you have a function o(x)=m(x)n(x)o(x) = \frac{m(x)}{n(x)}, then its derivative o(x)o'(x) is given by:\newlineo(x)=m(x)n(x)m(x)n(x)(n(x))2o'(x) = \frac{m'(x) \cdot n(x) - m(x) \cdot n'(x)}{(n(x))^2}.
  2. Apply Rule: Apply the quotient rule using the given values.\newlineWe are given m(7)=2m(7) = 2, m(7)=1m'(7) = -1, n(7)=4n(7) = 4, and n(7)=8n'(7) = 8. Plugging these values into the quotient rule, we get:\newlineo(7)=((1)428)/(4)2o'(7) = ((-1) \cdot 4 - 2 \cdot 8) / (4)^2.
  3. Perform Calculations: Perform the calculations.\newlineNow we calculate the numerator and the denominator separately:\newlineNumerator: (1)×42×8=416=20(-1) \times 4 - 2 \times 8 = -4 - 16 = -20.\newlineDenominator: (4)2=16(4)^2 = 16.\newlineSo, o(7)=2016o'(7) = \frac{-20}{16}.
  4. Simplify Fraction: Simplify the fraction.\newlineThe fraction 2016-\frac{20}{16} can be simplified by dividing both the numerator and the denominator by their greatest common divisor, which is 44:\newlineo'(77) = (204)/(164)=54\left(-\frac{20}{4}\right) / \left(\frac{16}{4}\right) = -\frac{5}{4}.

More problems from Compare linear and exponential growth