Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

y^(')=0.5(100-y)
Is 
y=5e^(-0.5 x)+100 a solution to the above equation?
Choose 1 answer:
(A) Yes
(B) No

y=0.5(100y) y^{\prime}=0.5(100-y) \newlineIs y=5e0.5x+100 y=5 e^{-0.5 x}+100 a solution to the above equation?\newlineChoose 11 answer:\newline(A) Yes\newline(B) No

Full solution

Q. y=0.5(100y) y^{\prime}=0.5(100-y) \newlineIs y=5e0.5x+100 y=5 e^{-0.5 x}+100 a solution to the above equation?\newlineChoose 11 answer:\newline(A) Yes\newline(B) No
  1. Given Differential Equation: Given the differential equation y=0.5(100y)y'=0.5(100-y), we need to verify if the function y=5e0.5x+100y=5e^{-0.5x}+100 is a solution to this equation.
  2. Differentiation of yy: To verify if y=5e0.5x+100y=5e^{-0.5x}+100 is a solution, we need to differentiate this function with respect to xx and check if the derivative matches the right-hand side of the given differential equation.
  3. Substitute into Equation: Differentiate y=5e0.5x+100y=5e^{-0.5x}+100 with respect to xx using the chain rule for the exponential function.\newliney=ddx[5e0.5x]+ddx[100]y' = \frac{d}{dx} [5e^{-0.5x}] + \frac{d}{dx} [100]\newliney=5(0.5)e0.5x+0y' = 5 * (-0.5) * e^{-0.5x} + 0\newliney=2.5e0.5xy' = -2.5e^{-0.5x}
  4. Simplify Expression: Now, we substitute y=5e0.5x+100y=5e^{-0.5x}+100 into the right-hand side of the given differential equation to see if it matches the derivative we found.\newlineRight-hand side of the differential equation: 0.5(100y)=0.5(100(5e0.5x+100))0.5(100-y) = 0.5(100-(5e^{-0.5x}+100))
  5. Compare Derivative: Simplify the right-hand side expression.\newline0.5(100(5e0.5x+100))=0.5(1005e0.5x100)0.5(100-(5e^{-0.5x}+100)) = 0.5(100-5e^{-0.5x}-100)\newline0.5(5e0.5x)=2.5e0.5x0.5(-5e^{-0.5x}) = -2.5e^{-0.5x}
  6. Compare Derivative: Simplify the right-hand side expression.\newline0.5(100(5e0.5x+100))=0.5(1005e0.5x100)0.5(100-(5e^{-0.5x}+100)) = 0.5(100-5e^{-0.5x}-100)\newline0.5(5e0.5x)=2.5e0.5x0.5(-5e^{-0.5x}) = -2.5e^{-0.5x} Compare the derivative yy' with the simplified right-hand side of the differential equation.\newlineWe found y=2.5e0.5xy' = -2.5e^{-0.5x} and the right-hand side is also 2.5e0.5x-2.5e^{-0.5x}.\newlineSince both expressions are equal, y=5e0.5x+100y=5e^{-0.5x}+100 is indeed a solution to the differential equation y=0.5(100y)y'=0.5(100-y).

More problems from Euler's method