Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
h(x)=x^(3)-6x^(2)+8.
The absolute minimum value of 
h over the closed interval 
-1 <= x <= 6 occurs at what 
x value?
Choose 1 answer:
(A) -1
(B) 6
(C) 4
(D) 0

Let h(x)=x36x2+8 h(x)=x^{3}-6 x^{2}+8 .\newlineThe absolute minimum value of h h over the closed interval 1x6 -1 \leq x \leq 6 occurs at what x x value?\newlineChoose 11 answer:\newline(A) 1-1\newline(B) 66\newline(C) 44\newline(D) 00

Full solution

Q. Let h(x)=x36x2+8 h(x)=x^{3}-6 x^{2}+8 .\newlineThe absolute minimum value of h h over the closed interval 1x6 -1 \leq x \leq 6 occurs at what x x value?\newlineChoose 11 answer:\newline(A) 1-1\newline(B) 66\newline(C) 44\newline(D) 00
  1. Find Derivative of h(x): To find the absolute minimum value of the function h(x)h(x) over the closed interval [1,6][-1, 6], we need to find the critical points of h(x)h(x) within the interval and evaluate h(x)h(x) at the endpoints of the interval.\newlineFirst, we find the derivative of h(x)h(x) to locate the critical points.\newlineh(x)=ddx(x36x2+8)h'(x) = \frac{d}{dx} (x^3 - 6x^2 + 8)\newlineh(x)=3x212xh'(x) = 3x^2 - 12x
  2. Locate Critical Points: Next, we set the derivative equal to zero to find the critical points.\newline0=3x212x0 = 3x^2 - 12x\newline0=3x(x4)0 = 3x(x - 4)\newlineThis gives us two critical points: x=0x = 0 and x=4x = 4.
  3. Evaluate h(x)h(x): Now we evaluate h(x)h(x) at the critical points and at the endpoints of the interval.\newlineh(1)=(1)36(1)2+8=16+8=1h(-1) = (-1)^3 - 6(-1)^2 + 8 = -1 - 6 + 8 = 1\newlineh(0)=(0)36(0)2+8=8h(0) = (0)^3 - 6(0)^2 + 8 = 8\newlineh(4)=(4)36(4)2+8=6496+8=24h(4) = (4)^3 - 6(4)^2 + 8 = 64 - 96 + 8 = -24\newlineh(6)=(6)36(6)2+8=216216+8=8h(6) = (6)^3 - 6(6)^2 + 8 = 216 - 216 + 8 = 8
  4. Compare Values: We compare the values of h(x)h(x) at x=1x = -1, x=0x = 0, x=4x = 4, and x=6x = 6 to find the smallest value.\newlineh(1)=1h(-1) = 1\newlineh(0)=8h(0) = 8\newlineh(4)=24h(4) = -24\newlineh(6)=8h(6) = 8\newlineThe smallest value is h(4)=24h(4) = -24, which means the absolute minimum occurs at x=4x = 4.

More problems from Euler's method