Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
g(x)=-2x^(3)+3x^(2)+36 x.
The absolute maximum value of 
g over the closed interval 
[-3,5] occurs at what 
x-value?
Choose 1 answer:
(A) 5
(B) 2
(C) 3
(D) -3

Let g(x)=2x3+3x2+36x g(x)=-2 x^{3}+3 x^{2}+36 x .\newlineThe absolute maximum value of g g over the closed interval [3,5] [-3,5] occurs at what x x -value?\newlineChoose 11 answer:\newline(A) 55\newline(B) 22\newline(C) 33\newline(D) 3-3

Full solution

Q. Let g(x)=2x3+3x2+36x g(x)=-2 x^{3}+3 x^{2}+36 x .\newlineThe absolute maximum value of g g over the closed interval [3,5] [-3,5] occurs at what x x -value?\newlineChoose 11 answer:\newline(A) 55\newline(B) 22\newline(C) 33\newline(D) 3-3
  1. Calculate Derivative: To find the absolute maximum value of the function g(x)g(x) on the closed interval [3,5][-3,5], we need to find the critical points of g(x)g(x) within the interval and evaluate g(x)g(x) at the endpoints of the interval. Critical points occur where the derivative g(x)g'(x) is zero or undefined.
  2. Find Critical Points: First, we calculate the derivative of g(x)g(x):g(x)=ddx(2x3+3x2+36x)g'(x) = \frac{d}{dx} (-2x^3 + 3x^2 + 36x)=6x2+6x+36= -6x^2 + 6x + 36
  3. Evaluate Function: Next, we find the critical points by setting g(x)g'(x) to zero and solving for xx:
    6x2+6x+36=0-6x^2 + 6x + 36 = 0
    Divide by 6-6:
    x2x6=0x^2 - x - 6 = 0
    Factor the quadratic:
    (x3)(x+2)=0(x - 3)(x + 2) = 0
    So, x=3x = 3 or x=2x = -2
  4. Maximum Value: Now we need to evaluate g(x)g(x) at the critical points and at the endpoints of the interval [3,5][-3,5]:\newlineg(3)g(-3), g(2)g(-2), g(3)g(3), and g(5)g(5).
  5. Maximum Value: Now we need to evaluate g(x)g(x) at the critical points and at the endpoints of the interval [3,5][-3,5]:g(3)g(-3), g(2)g(-2), g(3)g(3), and g(5)g(5).Evaluate g(x)g(x) at x=3x = -3:g(3)=2(3)3+3(3)2+36(3)=2(27)+3(9)108=54+27108=27g(-3) = -2(-3)^3 + 3(-3)^2 + 36(-3) = -2(-27) + 3(9) - 108 = 54 + 27 - 108 = -27
  6. Maximum Value: Now we need to evaluate g(x)g(x) at the critical points and at the endpoints of the interval [3,5][-3,5]:g(3)g(-3), g(2)g(-2), g(3)g(3), and g(5)g(5).Evaluate g(x)g(x) at x=3x = -3:g(3)=2(3)3+3(3)2+36(3)=2(27)+3(9)108=54+27108=27g(-3) = -2(-3)^3 + 3(-3)^2 + 36(-3) = -2(-27) + 3(9) - 108 = 54 + 27 - 108 = -27Evaluate g(x)g(x) at [3,5][-3,5]00:[3,5][-3,5]11
  7. Maximum Value: Now we need to evaluate g(x)g(x) at the critical points and at the endpoints of the interval [3,5][-3,5]:g(3)g(-3), g(2)g(-2), g(3)g(3), and g(5)g(5).Evaluate g(x)g(x) at x=3x = -3:g(3)=2(3)3+3(3)2+36(3)=2(27)+3(9)108=54+27108=27g(-3) = -2(-3)^3 + 3(-3)^2 + 36(-3) = -2(-27) + 3(9) - 108 = 54 + 27 - 108 = -27Evaluate g(x)g(x) at [3,5][-3,5]00:[3,5][-3,5]11Evaluate g(x)g(x) at [3,5][-3,5]33:[3,5][-3,5]44
  8. Maximum Value: Now we need to evaluate g(x)g(x) at the critical points and at the endpoints of the interval [3,5][-3,5]:g(3)g(-3), g(2)g(-2), g(3)g(3), and g(5)g(5).Evaluate g(x)g(x) at x=3x = -3:g(3)=2(3)3+3(3)2+36(3)=2(27)+3(9)108=54+27108=27g(-3) = -2(-3)^3 + 3(-3)^2 + 36(-3) = -2(-27) + 3(9) - 108 = 54 + 27 - 108 = -27Evaluate g(x)g(x) at [3,5][-3,5]00:[3,5][-3,5]11Evaluate g(x)g(x) at [3,5][-3,5]33:[3,5][-3,5]44Evaluate g(x)g(x) at [3,5][-3,5]66:[3,5][-3,5]77
  9. Maximum Value: Now we need to evaluate g(x)g(x) at the critical points and at the endpoints of the interval [3,5][-3,5]:g(3)g(-3), g(2)g(-2), g(3)g(3), and g(5)g(5).Evaluate g(x)g(x) at x=3x = -3:g(3)=2(3)3+3(3)2+36(3)=2(27)+3(9)108=54+27108=27g(-3) = -2(-3)^3 + 3(-3)^2 + 36(-3) = -2(-27) + 3(9) - 108 = 54 + 27 - 108 = -27Evaluate g(x)g(x) at [3,5][-3,5]00:[3,5][-3,5]11Evaluate g(x)g(x) at [3,5][-3,5]33:[3,5][-3,5]44Evaluate g(x)g(x) at [3,5][-3,5]66:[3,5][-3,5]77Comparing the values of g(x)g(x) at x=3x = -3, [3,5][-3,5]00, [3,5][-3,5]33, and [3,5][-3,5]66, we find that the maximum value is g(3)g(-3)33, which occurs at [3,5][-3,5]33.

More problems from Euler's method