Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
f(x)=x^(3)+9x^(2)+13 x and let 
c be the number that satisfies the Mean Value Theorem for 
f on the interval 
-7 <= x <= -1.
What is 
c ?
Choose 1 answer:
(A) -6
(B) -5
(C) -3
(D) -2

Let f(x)=x3+9x2+13x f(x)=x^{3}+9 x^{2}+13 x and let c c be the number that satisfies the Mean Value Theorem for f f on the interval 7x1 -7 \leq x \leq-1 .\newlineWhat is c c ?\newlineChoose 11 answer:\newline(A) 6-6\newline(B) 5-5\newline(C) 3-3\newline(D) 2-2

Full solution

Q. Let f(x)=x3+9x2+13x f(x)=x^{3}+9 x^{2}+13 x and let c c be the number that satisfies the Mean Value Theorem for f f on the interval 7x1 -7 \leq x \leq-1 .\newlineWhat is c c ?\newlineChoose 11 answer:\newline(A) 6-6\newline(B) 5-5\newline(C) 3-3\newline(D) 2-2
  1. Mean Value Theorem Explanation: The Mean Value Theorem states that if a function ff is continuous on the closed interval [a,b][a, b] and differentiable on the open interval (a,b)(a, b), then there exists at least one number cc in the interval (a,b)(a, b) such that f(c)f'(c) is equal to the average rate of change of the function over [a,b][a, b]. This can be written as:\newlinef(c)=f(b)f(a)baf'(c) = \frac{f(b) - f(a)}{b - a}\newlineGiven the function f(x)=x3+9x2+13xf(x) = x^3 + 9x^2 + 13x, we need to find the derivative f(x)f'(x) to apply the Mean Value Theorem.
  2. Finding Derivative: To find f(x)f'(x), we differentiate f(x)f(x) with respect to xx:

    f(x)=ddx(x3+9x2+13x)f'(x) = \frac{d}{dx} (x^3 + 9x^2 + 13x)
    =3x2+18x+13\quad\quad = 3x^2 + 18x + 13

    Now we have the derivative of the function.
  3. Calculating Average Rate of Change: Next, we need to calculate the average rate of change of f(x)f(x) over the interval [7,1][-7, -1]. This requires evaluating f(x)f(x) at the endpoints of the interval:\newlinef(7)=(7)3+9(7)2+13(7)f(-7) = (-7)^3 + 9(-7)^2 + 13(-7)\newline =343+44191= -343 + 441 - 91\newline =343+350= -343 + 350\newline =7= 7\newlinef(1)=(1)3+9(1)2+13(1)f(-1) = (-1)^3 + 9(-1)^2 + 13(-1)\newline =1+913= -1 + 9 - 13\newline =5= -5\newlineNow we have the values of f(x)f(x) at the endpoints of the interval.
  4. Applying Mean Value Theorem: We can now calculate the average rate of change of f(x)f(x) over the interval [7,1][-7, -1]:\newline(f(1)f(7))/(1(7))(f(-1) - f(-7)) / (-1 - (-7))\newline= (57)/(1+7)(-5 - 7) / (-1 + 7)\newline= 12/6-12 / 6\newline= 2-2\newlineThe average rate of change of f(x)f(x) over the interval is 2-2.
  5. Solving Quadratic Equation: According to the Mean Value Theorem, there exists a number cc in the interval (7,1)(-7, -1) such that f(c)=2f'(c) = -2. We have already found that f(x)=3x2+18x+13f'(x) = 3x^2 + 18x + 13. We set this equal to 2-2 to find cc:\newline3c2+18c+13=23c^2 + 18c + 13 = -2\newlineNow we need to solve this quadratic equation for cc.
  6. Using Quadratic Formula: We rearrange the equation to bring all terms to one side:\newline3c2+18c+13+2=03c^2 + 18c + 13 + 2 = 0\newline3c2+18c+15=03c^2 + 18c + 15 = 0\newlineNow we have a standard quadratic equation to solve for cc.
  7. Finding Valid Solution: To solve the quadratic equation, we can either factor it, complete the square, or use the quadratic formula. The quadratic formula is:\newlinec = b±b24ac2a\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\newlineFor our equation, a=3a = 3, b=18b = 18, and c=15c = 15. We substitute these values into the formula to find the roots.
  8. Finding Valid Solution: To solve the quadratic equation, we can either factor it, complete the square, or use the quadratic formula. The quadratic formula is:\newlinec=b±b24ac2ac = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\newlineFor our equation, a=3a = 3, b=18b = 18, and c=15c = 15. We substitute these values into the formula to find the roots.Using the quadratic formula:\newlinec=18±182431523c = \frac{-18 \pm \sqrt{18^2 - 4\cdot3\cdot15}}{2\cdot3}\newlinec=18±3241806c = \frac{-18 \pm \sqrt{324 - 180}}{6}\newlinec=18±1446c = \frac{-18 \pm \sqrt{144}}{6}\newlinec=18±126c = \frac{-18 \pm 12}{6}\newlineThis gives us two possible solutions for cc.
  9. Finding Valid Solution: To solve the quadratic equation, we can either factor it, complete the square, or use the quadratic formula. The quadratic formula is:\newlinec = b±b24ac2a\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\newlineFor our equation, a=3a = 3, b=18b = 18, and c=15c = 15. We substitute these values into the formula to find the roots.Using the quadratic formula:\newlinec = 18±182431523\frac{-18 \pm \sqrt{18^2 - 4\cdot3\cdot15}}{2\cdot3}\newlinec = 18±3241806\frac{-18 \pm \sqrt{324 - 180}}{6}\newlinec = 18±1446\frac{-18 \pm \sqrt{144}}{6}\newlinec = 18±126\frac{-18 \pm 12}{6}\newlineThis gives us two possible solutions for c.The two possible solutions for c are:\newlinec = 18+126=66=1\frac{-18 + 12}{6} = \frac{-6}{6} = -1\newlinec = 18126=306=5\frac{-18 - 12}{6} = \frac{-30}{6} = -5\newlineHowever, c must be in the interval a=3a = 300, so a=3a = 311 is not a valid solution because it is not in the open interval. Therefore, the only valid solution is a=3a = 322.

More problems from Euler's method