Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

x^((3)/(2))*((1)/(x^((5)/(2))))^(2)
Which of the following is equivalent to the given expression for all positive values of 
x ?
Choose 1 answer:
(A) 
(1)/(x^(2))
(B) 
(1)/(sqrt(x^(7)))
(C) 
(1)/(root(7)(x^(2)))
(D) 
(1)/(root(4)(x^(19)))

x32(1x52)2 x^{\frac{3}{2}} \cdot\left(\frac{1}{x^{\frac{5}{2}}}\right)^{2} \newlineWhich of the following is equivalent to the given expression for all positive values of x x ?\newlineChoose 11 answer:\newline(A) 1x2 \frac{1}{x^{2}} \newline(B) 1x7 \frac{1}{\sqrt{x^{7}}} \newline(C) 1x27 \frac{1}{\sqrt[7]{x^{2}}} \newline(D) 1x194 \frac{1}{\sqrt[4]{x^{19}}}

Full solution

Q. x32(1x52)2 x^{\frac{3}{2}} \cdot\left(\frac{1}{x^{\frac{5}{2}}}\right)^{2} \newlineWhich of the following is equivalent to the given expression for all positive values of x x ?\newlineChoose 11 answer:\newline(A) 1x2 \frac{1}{x^{2}} \newline(B) 1x7 \frac{1}{\sqrt{x^{7}}} \newline(C) 1x27 \frac{1}{\sqrt[7]{x^{2}}} \newline(D) 1x194 \frac{1}{\sqrt[4]{x^{19}}}
  1. Simplify expression inside parentheses: Simplify the given expression using the properties of exponents.\newlineThe given expression is x32(1x52)2x^{\frac{3}{2}} \cdot \left(\frac{1}{x^{\frac{5}{2}}}\right)^2. We can simplify the expression inside the parentheses first by raising x52x^{\frac{5}{2}} to the power of 22, which means we multiply the exponents.\newline(1x52)2=1x522=1x5.\left(\frac{1}{x^{\frac{5}{2}}}\right)^2 = \frac{1}{x^{\frac{5}{2} \cdot 2}} = \frac{1}{x^5}.
  2. Multiply x32x^{\frac{3}{2}} by 1x5\frac{1}{x^5}: Now, we multiply x32x^{\frac{3}{2}} by 1x5\frac{1}{x^5}.\newlineUsing the property of exponents that states when we divide like bases we subtract the exponents, we get:\newlinex321x5=x325=x72x^{\frac{3}{2}} \cdot \frac{1}{x^5} = x^{\frac{3}{2} - 5} = x^{-\frac{7}{2}}.
  3. Convert negative exponent to positive: Convert the negative exponent to a positive exponent by taking the reciprocal. \newlinex(72)x^{(-\frac{7}{2})} is equivalent to 1x(72)\frac{1}{x^{(\frac{7}{2})}}.
  4. Convert fractional exponent to radical: Simplify the expression further by converting the fractional exponent to a radical.\newlinex72x^{\frac{7}{2}} is equivalent to the square root of x7x^7, which can also be written as x7\sqrt{x^7}.\newlineTherefore, 1x72\frac{1}{x^{\frac{7}{2}}} is equivalent to 1x7\frac{1}{\sqrt{x^7}}.
  5. Match with answer choices: Match the simplified expression to the given answer choices.\newlineThe expression 1x7\frac{1}{\sqrt{x^7}} matches with choice (B) 1x7\frac{1}{\sqrt{x^7}}.

More problems from Compare linear and exponential growth