Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

x^(2-log_(4)(x))=pi.

x2log4(x)=π x^{2-\log _{4}(x)}=\pi .

Full solution

Q. x2log4(x)=π x^{2-\log _{4}(x)}=\pi .
  1. Identify Equation and Base: Identify the given equation and the base of the logarithm.\newlineThe equation is x2log4(x)=πx^{2-\log_{4}(x)}=\pi, and the base of the logarithm is 44.
  2. Rewrite Logarithmic Term: Rewrite the logarithmic term using the property of exponents: aloga(b)=ba^{\log_a(b)} = b. Here, we can write xlog4(x)x^{\log_4(x)} as 44 because 44 is the base of the logarithm.
  3. Combine Exponents: Apply the property of exponents to combine the terms with the same base. x2×xlog4(x)=x2log4(x)x^{2} \times x^{-\log_{4}(x)} = x^{2 - \log_{4}(x)}.
  4. Substitute Rewritten Term: Substitute the rewritten logarithmic term back into the equation. x241=πx^{2} \cdot 4^{-1} = \pi.
  5. Recognize Reciprocal: Recognize that 414^{-1} is the reciprocal of 44, which is 14\frac{1}{4}. x2(14)=πx^{2} \cdot \left(\frac{1}{4}\right) = \pi.
  6. Isolate x2x^2: Multiply both sides of the equation by 44 to isolate x2x^{2} on one side.\newline4×(x2×(14))=4×π4 \times (x^{2} \times (\frac{1}{4})) = 4 \times \pi.
  7. Take Square Root: Simplify the equation by canceling out the 14\frac{1}{4} on the left side.\newlinex2=4×πx^{2} = 4 \times \pi.
  8. Calculate Square Root: Take the square root of both sides to solve for xx.x=4π.x = \sqrt{4 \cdot \pi}.
  9. Simplify Square Root: Calculate the square root of 4×π4 \times \pi. \newlinex=4×π.x = \sqrt{4} \times \sqrt{\pi}.
  10. Rewrite Using Exponents: Simplify the square root of 44, which is 22.\newlinex=2×π.x = 2 \times \sqrt{\pi}.
  11. Change of Base Formula: Rewrite the equation using the property of exponents: x(ab)=xaxbx^{(a-b)} = \frac{x^a}{x^b}.\newlinex(2log4(x))=x2x(log4(x))x^{(2-\log_{4}(x))} = \frac{x^2}{x^{(\log_{4}(x))}}.
  12. Simplify Expression: Recognize that xlog4(x)x^{\log_{4}(x)} can be rewritten using the change of base formula for logarithms: log4(x)=log(x)log(4)\log_{4}(x) = \frac{\log(x)}{\log(4)}.\newlinex2log4(x)=x24log4(x)x^{2-\log_{4}(x)} = \frac{x^2}{4^{\log_{4}(x)}}.
  13. Cancel Out x: Simplify the expression using the property aloga(b)=ba^{\log_a(b)} = b. \newlinex2log4(x)=x2xx^{2-\log_{4}(x)} = \frac{x^2}{x}.
  14. Set Equal to pi: Simplify the right side of the equation by canceling out one xx.x2log4(x)=xx^{2-\log_{4}(x)} = x.
  15. Set Equal to pi: Simplify the right side of the equation by canceling out one xx.x2log4(x)=xx^{2-\log_{4}(x)} = x.Set the simplified expression equal to π\pi.x=πx = \pi.

More problems from Evaluate rational exponents