Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify 
ln((1)/(sqrte))
Answer:

Simplify ln(1e) \ln \left(\frac{1}{\sqrt{e}}\right) \newlineAnswer:

Full solution

Q. Simplify ln(1e) \ln \left(\frac{1}{\sqrt{e}}\right) \newlineAnswer:
  1. Identify Given Expression: Identify the given expression and the properties of logarithms that can be applied.\newlineThe given expression is ln(1e)\ln\left(\frac{1}{\sqrt{e}}\right). We can use the property that ln(1x)=ln(x)\ln\left(\frac{1}{x}\right) = -\ln(x) and that ln(x12)=12ln(x)\ln\left(x^{\frac{1}{2}}\right) = \frac{1}{2}\ln(x).
  2. Apply Logarithm Property: Apply the logarithm property to the expression.\newlineUsing the property ln(1x)=ln(x)\ln(\frac{1}{x}) = -\ln(x), we can rewrite ln(1e)\ln(\frac{1}{\sqrt{e}}) as ln(e)-\ln(\sqrt{e}).
  3. Simplify Inside Logarithm: Simplify the expression inside the logarithm.\newlineSince e\sqrt{e} is the same as e(1/2)e^{(1/2)}, we can rewrite ln(e)-\ln(\sqrt{e}) as ln(e(1/2))-\ln(e^{(1/2)}).
  4. Apply Power Rule: Apply the logarithm power rule.\newlineUsing the power rule ln(xa)=aln(x)\ln(x^{a}) = a\cdot\ln(x), we can simplify ln(e12)-\ln(e^{\frac{1}{2}}) to (12)ln(e)-\left(\frac{1}{2}\right)\ln(e).
  5. Simplify Logarithm: Simplify the logarithm of the base ee.\newlineSince ln(e)\ln(e) is equal to 11, we can simplify (12)ln(e)-(\frac{1}{2})\ln(e) to (12)1-(\frac{1}{2})\cdot 1.
  6. Calculate Final Value: Calculate the final value.\newlineMultiplying 12-\frac{1}{2} by 11 gives us 12-\frac{1}{2}.

More problems from Evaluate rational exponents