Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify 
ln((1)/(e))
Answer:

Simplify ln(1e) \ln \left(\frac{1}{e}\right) \newlineAnswer:

Full solution

Q. Simplify ln(1e) \ln \left(\frac{1}{e}\right) \newlineAnswer:
  1. Identify Properties: Identify the properties of logarithms that can be applied to the problem.\newlineThe natural logarithm of 11 over ee, ln(1e)\ln\left(\frac{1}{e}\right), can be rewritten using the property of logarithms that states ln(ab)=ln(a)ln(b)\ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b).
  2. Apply Property: Apply the logarithm property to the given expression. \newlineln(1e)=ln(1)ln(e)\ln\left(\frac{1}{e}\right) = \ln(1) - \ln(e)
  3. Simplify Logarithms: Simplify the natural logarithm of 11 and the natural logarithm of ee.ln(1)\ln(1) is always 00 because e0=1e^0 = 1, and ln(e)\ln(e) is always 11 because e1=ee^1 = e. So, ln(1)ln(e)=01\ln(1) - \ln(e) = 0 - 1
  4. Calculate Final Value: Calculate the final simplified value.\newline01=10 - 1 = -1

More problems from Evaluate rational exponents