Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the area of the region bound by the graphs of 
f(x)=sqrt(x-2),g(x)=14-x, and 
x=2 ?
Choose 1 answer:
(A) 
(19)/(6)
(B) 
(99)/(2)
(C) 
(151)/(2)
(D) 
(45)/(2)

What is the area of the region bound by the graphs of f(x)=x2,g(x)=14x f(x)=\sqrt{x-2}, g(x)=14-x , and x=2 x=2 ?\newlineChoose 11 answer:\newline(A) 196 \frac{19}{6} \newline(B) 992 \frac{99}{2} \newline(C) 1512 \frac{151}{2} \newline(D) 452 \frac{45}{2}

Full solution

Q. What is the area of the region bound by the graphs of f(x)=x2,g(x)=14x f(x)=\sqrt{x-2}, g(x)=14-x , and x=2 x=2 ?\newlineChoose 11 answer:\newline(A) 196 \frac{19}{6} \newline(B) 992 \frac{99}{2} \newline(C) 1512 \frac{151}{2} \newline(D) 452 \frac{45}{2}
  1. Find Intersection Points: Find the intersection points of f(x)f(x) and g(x)g(x). Set x2=14x\sqrt{x-2} = 14-x.
  2. Solve for x: Solve for x: x2=(14x)2x-2 = (14-x)^2. This simplifies to x2=19628x+x2x-2 = 196-28x+x^2.

More problems from Operations with rational exponents