Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which expression is equivalent to 
((3^(4))^(-6))/(3^(-5))?

3^(-29)

3^(-19)

3^(19)

3^(-21)

Which expression is equivalent to (34)635? \frac{\left(3^{4}\right)^{-6}}{3^{-5}} ? \newline329 3^{-29} \newline319 3^{-19} \newline319 3^{19} \newline321 3^{-21}

Full solution

Q. Which expression is equivalent to (34)635? \frac{\left(3^{4}\right)^{-6}}{3^{-5}} ? \newline329 3^{-29} \newline319 3^{-19} \newline319 3^{19} \newline321 3^{-21}
  1. Simplify numerator: Simplify the numerator ((34)(6))((3^{4})^{(-6)}). When raising a power to another power, we multiply the exponents. (34)(6)=346=324(3^{4})^{(-6)} = 3^{4 \cdot -6} = 3^{-24}
  2. Simplify denominator: Simplify the denominator 353^{-5}. The denominator is already in its simplest form, so we can leave it as 353^{-5}.
  3. Divide numerator by denominator: Divide the numerator by the denominator.\newlineWhen dividing like bases with exponents, we subtract the exponents.\newline3(24)/3(5)=3(24(5))=3(24+5)=3(19)3^{(-24)} / 3^{(-5)} = 3^{(-24 - (-5))} = 3^{(-24 + 5)} = 3^{(-19)}
  4. Verify final expression: Verify the final expression.\newlineThe final expression is 3(19)3^{(-19)}, which is one of the options given.

More problems from Operations with rational exponents