Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which expression is equivalent to 
(2^(-5))/(2^(-3))×2^(-4) ?

2^(2)

2^(-6)

2^(-7)

2^(-2)

Which expression is equivalent to 2523×24 \frac{2^{-5}}{2^{-3}} \times 2^{-4} ?\newline22 2^{2} \newline26 2^{-6} \newline27 2^{-7} \newline22 2^{-2}

Full solution

Q. Which expression is equivalent to 2523×24 \frac{2^{-5}}{2^{-3}} \times 2^{-4} ?\newline22 2^{2} \newline26 2^{-6} \newline27 2^{-7} \newline22 2^{-2}
  1. Identify Properties: Identify the properties of exponents that will be used to simplify the expression. When dividing like bases with exponents, subtract the exponents: am/an=a(mn)a^m / a^n = a^{(m-n)}. When multiplying like bases with exponents, add the exponents: am×an=a(m+n)a^m \times a^n = a^{(m+n)}.
  2. Apply Division Property: Apply the division property to (25)/(23)(2^{-5})/(2^{-3}). Subtract the exponents: 5(3)=5+3=2-5 - (-3) = -5 + 3 = -2.\newlineSo, (25)/(23)(2^{-5})/(2^{-3}) simplifies to 222^{-2}.
  3. Multiply Result: Now multiply the result, 222^{-2}, by 242^{-4} using the multiplication property of exponents. Add the exponents: 2+(4)=24=6-2 + (-4) = -2 - 4 = -6. So, 22×242^{-2} \times 2^{-4} simplifies to 262^{-6}.
  4. Check Final Result: Check the final result to ensure no mathematical errors were made. The properties of exponents have been correctly applied, and the calculations are correct.

More problems from Operations with rational exponents