Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the value of 
A when we rewrite 
((6)/(17))^(9x) as 
A^(x) ?
Choose 1 answer:
(A) 
A=((6)/(17))^(9)
(B) 
A=-(1)/(9)
(C) 
A=(54)/(17)
(D) 
A=((17)/(6))^(9)

What is the value of A A when we rewrite (617)9x \left(\frac{6}{17}\right)^{9 x} as Ax A^{x} ?\newlineChoose 11 answer:\newline(A) A=(617)9 A=\left(\frac{6}{17}\right)^{9} \newline(B) A=19 A=-\frac{1}{9} \newline(C) A=5417 A=\frac{54}{17} \newline(D) A=(176)9 A=\left(\frac{17}{6}\right)^{9}

Full solution

Q. What is the value of A A when we rewrite (617)9x \left(\frac{6}{17}\right)^{9 x} as Ax A^{x} ?\newlineChoose 11 answer:\newline(A) A=(617)9 A=\left(\frac{6}{17}\right)^{9} \newline(B) A=19 A=-\frac{1}{9} \newline(C) A=5417 A=\frac{54}{17} \newline(D) A=(176)9 A=\left(\frac{17}{6}\right)^{9}
  1. Problem Understanding: Understand the problem.\newlineWe need to express (617)9x\left(\frac{6}{17}\right)^{9x} in the form of AxA^{x}, where AA is a constant.
  2. Expression Rewrite: Rewrite the given expression.\newlineWe have (617)9x\left(\frac{6}{17}\right)^{9x} and we want to write it as AxA^{x}. To do this, we need to find a value for AA such that Ax=(617)9xA^{x} = \left(\frac{6}{17}\right)^{9x}.
  3. Base Identification: Identify the base of the exponent.\newlineIn the expression (617)9x\left(\frac{6}{17}\right)^{9x}, the base is 617\frac{6}{17} and the exponent is 9x9x. We want to find AA such that A=(617)9A = \left(\frac{6}{17}\right)^9.
  4. A Calculation: Calculate the value of AA.A=(617)9A = \left(\frac{6}{17}\right)^9
  5. Matching Choice: Match the calculated value of AA with the given choices.\newlineThe correct choice that matches our calculation is:\newline(A) A=(617)9A=\left(\frac{6}{17}\right)^{9}

More problems from Compare linear and exponential growth