Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the value of 
A when we rewrite 
((5)/(2))^(x)+((5)/(2))^(x+3) as 
A*((5)/(2))^(x) ?

A=

What is the value of A A when we rewrite (52)x+(52)x+3 \left(\frac{5}{2}\right)^{x}+\left(\frac{5}{2}\right)^{x+3} as A. (52)x \left(\frac{5}{2}\right)^{x} ?\newlineA= A=

Full solution

Q. What is the value of A A when we rewrite (52)x+(52)x+3 \left(\frac{5}{2}\right)^{x}+\left(\frac{5}{2}\right)^{x+3} as A. (52)x \left(\frac{5}{2}\right)^{x} ?\newlineA= A=
  1. Factor out common term: Question_prompt: What is the value of AA when we rewrite (52)x+(52)x+3\left(\frac{5}{2}\right)^{x}+\left(\frac{5}{2}\right)^{x+3} as A(52)xA\cdot\left(\frac{5}{2}\right)^{x}?
  2. Calculate exponent: First, let's factor out (52)x\left(\frac{5}{2}\right)^x from both terms.(52)x(1+(52)3)\left(\frac{5}{2}\right)^x \cdot \left(1 + \left(\frac{5}{2}\right)^3\right)
  3. Substitute back: Now, calculate (52)3\left(\frac{5}{2}\right)^3.(52)3=5323=1258\left(\frac{5}{2}\right)^3 = \frac{5^3}{2^3} = \frac{125}{8}
  4. Add fractions: Substitute 1258\frac{125}{8} back into the factored expression.\newline(52)x×(1+1258)\left(\frac{5}{2}\right)^{x} \times \left(1 + \frac{125}{8}\right)
  5. Find final value: Add 11 to 1258\frac{125}{8} to get a common denominator.\newline(88)+(1258)=8+1258=1338(\frac{8}{8}) + (\frac{125}{8}) = \frac{8 + 125}{8} = \frac{133}{8}
  6. Find final value: Add 11 to 125/8125/8 to get a common denominator.\newline(8/8)+(125/8)=(8+125)/8=133/8(8/8) + (125/8) = (8 + 125)/8 = 133/8 Now, we have AA as 133/8133/8.\newlineA=133/8A = 133/8

More problems from Compare linear and exponential growth