Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the value of 
A when we rewrite 
4^(31 x) as 
A^(x) ?
Choose 1 answer:
(A) 
A=(4)/(31)
(B) 
A=4^(31)
(c) 
A=4*31
(D) 
A=31^(4)

What is the value of A A when we rewrite 431x 4^{31 x} as Ax A^{x} ?\newlineChoose 11 answer:\newline(A) A=431 A=\frac{4}{31} \newline(B) A=431 A=4^{31} \newline(C) A=431 A=4 \cdot 31 \newline(D) A=314 A=31^{4}

Full solution

Q. What is the value of A A when we rewrite 431x 4^{31 x} as Ax A^{x} ?\newlineChoose 11 answer:\newline(A) A=431 A=\frac{4}{31} \newline(B) A=431 A=4^{31} \newline(C) A=431 A=4 \cdot 31 \newline(D) A=314 A=31^{4}
  1. Problem Understanding: Understand the problem.\newlineWe need to express 431x4^{31x} in the form of AxA^{x}, where AA is a constant that does not depend on xx.
  2. Expression Rewrite: Rewrite the expression.\newlineSince we want to express 431x4^{31x} as AxA^{x}, we need to find a value for AA such that Ax=431xA^{x} = 4^{31x}.
  3. Base and Exponent Identification: Identify the base and the exponent.\newlineIn the expression 431x4^{31x}, the base is 44 and the exponent is 31x31x. We want to keep the exponent as xx in the new expression AxA^{x}.
  4. Finding the Value of A: Find the value of A.\newlineTo keep the exponent as xx, AA must be equal to 44 raised to the power of 3131, because (431)x=431x(4^{31})^x = 4^{31x}.
  5. Choosing the Correct Answer: Choose the correct answer.\newlineFrom the options given, the correct answer is (B) A=431A = 4^{31}.

More problems from Compare linear and exponential growth