Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the value of 
A when we rewrite 
3.14^(159 x) as 
A^(x) ?
Choose 1 answer:
(A) 
A=3.14159
(B) 
A=(1.59)/(314)
(C) 
A=3.14^(159)
(D) 
A=(3.14)/(159)

What is the value of A A when we rewrite 3.14159x 3.14^{159 x} as Ax A^{x} ?\newlineChoose 11 answer:\newline(A) A=3.14159 A=3.14159 \newline(B) A=1.59314 A=\frac{1.59}{314} \newline(C) A=3.14159 A=3.14^{159} \newline(D) A=3.14159 A=\frac{3.14}{159}

Full solution

Q. What is the value of A A when we rewrite 3.14159x 3.14^{159 x} as Ax A^{x} ?\newlineChoose 11 answer:\newline(A) A=3.14159 A=3.14159 \newline(B) A=1.59314 A=\frac{1.59}{314} \newline(C) A=3.14159 A=3.14^{159} \newline(D) A=3.14159 A=\frac{3.14}{159}
  1. Given expression: We are given the expression 3.14(159x)3.14^{(159 x)} and we want to rewrite it in the form AxA^{x}. To do this, we need to find a value for AA such that AxA^{x} is equivalent to 3.14(159x)3.14^{(159 x)}.
  2. Finding A: To find A, we can equate the bases of the expressions, since the exponents are already in the desired form xx. This means we set AA equal to the base of the given expression raised to the power of 159159. Therefore, A=3.14159A = 3.14^{159}.
  3. Matching the result: Now we look at the answer choices to see which one matches our result:\newline(A) A=3.14159A=3.14159\newline(B) A=1.59314A=\frac{1.59}{314}\newline(C) A=3.14159A=3.14^{159}\newline(D) A=3.14159A=\frac{3.14}{159}\newlineThe correct answer is (C) A=3.14159A=3.14^{159}, as it matches our calculation.

More problems from Compare linear and exponential growth