Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the value of 
A when we rewrite 
29^((x)/(2)) as 
A^(x) ?
Choose 1 answer:
(A) 
A=(29)/(2)
(B) 
A=29^(2)
(C) 
A=29^((1)/(2))
(D) 
A=((1)/(29))^(2)

What is the value of A A when we rewrite 29x2 29^{\frac{x}{2}} as Ax A^{x} ?\newlineChoose 11 answer:\newline(A) A=292 A=\frac{29}{2} \newline(B) A=292 A=29^{2} \newline(C) A=2912 A=29^{\frac{1}{2}} \newline(D) A=(129)2 A=\left(\frac{1}{29}\right)^{2}

Full solution

Q. What is the value of A A when we rewrite 29x2 29^{\frac{x}{2}} as Ax A^{x} ?\newlineChoose 11 answer:\newline(A) A=292 A=\frac{29}{2} \newline(B) A=292 A=29^{2} \newline(C) A=2912 A=29^{\frac{1}{2}} \newline(D) A=(129)2 A=\left(\frac{1}{29}\right)^{2}
  1. Find Base A: To rewrite 29(x/2)29^{(x/2)} as AxA^x, we need to find a base AA such that when raised to the power of xx, it is equivalent to 29(x/2)29^{(x/2)}. This means we are looking for a base AA that when squared (because the exponent xx in AxA^x will be effectively halved when compared to 29(x/2)29^{(x/2)}) gives us 2929.
  2. Square of A: We know that (Ax)2=A2x(A^{x})^2 = A^{2x}. Therefore, if we want AxA^{x} to be equivalent to 29x229^{\frac{x}{2}}, we need A2A^2 to be equal to 2929. This means AA is the square root of 2929.
  3. Calculate A: The square root of 2929 is written as 29(12)29^{(\frac{1}{2})}. Therefore, A=29(12)A = 29^{(\frac{1}{2})}.
  4. Check Answer Choices: We can now check the answer choices to see which one matches our result:\newline(A) A=292A=\frac{29}{2} is incorrect because it represents a fraction, not a square root.\newline(B) A=292A=29^{2} is incorrect because it represents the square of 2929, not the square root.\newline(C) A=2912A=29^{\frac{1}{2}} is correct because it represents the square root of 2929.\newline(D) A=(129)2A=\left(\frac{1}{29}\right)^{2} is incorrect because it represents the square of the reciprocal of 2929, not the square root of 2929.

More problems from Compare linear and exponential growth