Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the value of 
A when we rewrite 
((2)/(3))^(x+4)-((2)/(3))^(x) as 
A*((2)/(3))^(x) ?

A=

What is the value of A A when we rewrite (23)x+4(23)x \left(\frac{2}{3}\right)^{x+4}-\left(\frac{2}{3}\right)^{x} as A(23)x A \cdot\left(\frac{2}{3}\right)^{x} ?\newlineA= A=

Full solution

Q. What is the value of A A when we rewrite (23)x+4(23)x \left(\frac{2}{3}\right)^{x+4}-\left(\frac{2}{3}\right)^{x} as A(23)x A \cdot\left(\frac{2}{3}\right)^{x} ?\newlineA= A=
  1. Factor out common term: We need to factor out (23)x\left(\frac{2}{3}\right)^x from both terms in the expression (23)x+4(23)x\left(\frac{2}{3}\right)^{x+4}-\left(\frac{2}{3}\right)^{x}.
  2. Rewrite using exponent property: First, we rewrite (23)x+4\left(\frac{2}{3}\right)^{x+4} as (23)x(23)4\left(\frac{2}{3}\right)^x \cdot \left(\frac{2}{3}\right)^4 by using the property of exponents that states am+n=amana^{m+n} = a^m \cdot a^n.
  3. Factor out common term again: Now we have (23)x(23)4(23)x\left(\frac{2}{3}\right)^x \cdot \left(\frac{2}{3}\right)^4 - \left(\frac{2}{3}\right)^x. We can factor (23)x\left(\frac{2}{3}\right)^x out of both terms.
  4. Calculate value inside brackets: After factoring out (23)x\left(\frac{2}{3}\right)^x, we get (23)x[(23)41].\left(\frac{2}{3}\right)^x \cdot \left[\left(\frac{2}{3}\right)^4 - 1\right].
  5. Substitute value into brackets: We calculate (23)4\left(\frac{2}{3}\right)^4 to find the value inside the brackets. (23)4=(24)/(34)=1681\left(\frac{2}{3}\right)^4 = \left(2^4\right)/\left(3^4\right) = \frac{16}{81}.
  6. Calculate final result: Substitute 1681\frac{16}{81} into the brackets: (23)x×(16811)\left(\frac{2}{3}\right)^x \times \left(\frac{16}{81} - 1\right).
  7. Calculate final result: Substitute 1681\frac{16}{81} into the brackets: (23)x×(16811)\left(\frac{2}{3}\right)^x \times \left(\frac{16}{81} - 1\right).Now we calculate 16811\frac{16}{81} - 1. Since 11 is equivalent to 8181\frac{81}{81}, we have 16818181=168181=6581.\frac{16}{81} - \frac{81}{81} = \frac{16 - 81}{81} = -\frac{65}{81}.
  8. Calculate final result: Substitute 1681\frac{16}{81} into the brackets: (23)x×(16811)\left(\frac{2}{3}\right)^x \times \left(\frac{16}{81} - 1\right).Now we calculate 16811\frac{16}{81} - 1. Since 11 is equivalent to 8181\frac{81}{81}, we have 16818181=168181=6581\frac{16}{81} - \frac{81}{81} = \frac{16 - 81}{81} = -\frac{65}{81}.The expression is now (23)x×(6581)\left(\frac{2}{3}\right)^x \times \left(-\frac{65}{81}\right). Therefore, A=6581A = -\frac{65}{81}.

More problems from Compare linear and exponential growth