Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the value of 
A when we rewrite 
((1)/(7))^(x-2)-((1)/(7))^(x) as 
A*((1)/(7))^(x) ?

A=

What is the value of A A when we rewrite (17)x2(17)x \left(\frac{1}{7}\right)^{x-2}-\left(\frac{1}{7}\right)^{x} as A(17)x A \cdot\left(\frac{1}{7}\right)^{x} ?\newlineA= A=

Full solution

Q. What is the value of A A when we rewrite (17)x2(17)x \left(\frac{1}{7}\right)^{x-2}-\left(\frac{1}{7}\right)^{x} as A(17)x A \cdot\left(\frac{1}{7}\right)^{x} ?\newlineA= A=
  1. Factor out (17)x(\frac{1}{7})^{x}: We need to express the given expression (17)(x2)(17)x(\frac{1}{7})^{(x-2)} - (\frac{1}{7})^{x} in the form of A(17)xA*(\frac{1}{7})^{x}. To do this, we will factor out (17)x(\frac{1}{7})^{x} from both terms.
  2. Rewrite (17)x2\left(\frac{1}{7}\right)^{x-2}: First, let's rewrite (17)x2\left(\frac{1}{7}\right)^{x-2} by separating the exponent into two parts: (17)x(17)2\left(\frac{1}{7}\right)^{x} \cdot \left(\frac{1}{7}\right)^{-2}.
  3. Calculate (17)2\left(\frac{1}{7}\right)^{-2}: Now, we know that (17)2\left(\frac{1}{7}\right)^{-2} is equal to 727^2, which is 4949. So, (17)x2\left(\frac{1}{7}\right)^{x-2} can be rewritten as 49×(17)x49 \times \left(\frac{1}{7}\right)^{x}.
  4. Substitute back into expression: Substitute this back into the original expression: $\(49\) \times \left(\frac{\(1\)}{\(7\)}\right)^{x} - \left(\frac{\(1\)}{\(7\)}\right)^{x}.
  5. Factor out \((\frac{1}{7})^{x}\): Now, factor out \((\frac{1}{7})^{x}\) from both terms: \((\frac{1}{7})^{x} \times (49 - 1)\).
  6. Calculate expression inside parentheses: Calculate the expression inside the parentheses: \(49 - 1 = 48\).
  7. Final expression in desired form: We now have the expression in the desired form: \(A \times \left(\frac{1}{7}\right)^{x}\), where \(A\) is \(48\).

More problems from Compare linear and exponential growth