Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the value of 
A when we rewrite 
1.44^(-1.2 x) as 
A^(x) ?
Choose 1 answer:
(A) 
A=(144)/(12)
(B) 
A=1.44^(-1.2)
(C) 
A=1.44^(1.2)
(D) 
A=12^(24 x)

What is the value of A A when we rewrite 1.441.2x 1.44^{-1.2 x} as Ax A^{x} ?\newlineChoose 11 answer:\newline(A) A=14412 A=\frac{144}{12} \newline(B) A=1.441.2 A=1.44^{-1.2} \newline(C) A=1.441.2 A=1.44^{1.2} \newline(D) A=1224x A=12^{24 x}

Full solution

Q. What is the value of A A when we rewrite 1.441.2x 1.44^{-1.2 x} as Ax A^{x} ?\newlineChoose 11 answer:\newline(A) A=14412 A=\frac{144}{12} \newline(B) A=1.441.2 A=1.44^{-1.2} \newline(C) A=1.441.2 A=1.44^{1.2} \newline(D) A=1224x A=12^{24 x}
  1. Understand the problem: Understand the problem.\newlineWe need to express the function 1.441.2x1.44^{-1.2 x} in the form of AxA^{x}, where AA is a constant.
  2. Rewrite function: Rewrite the given function in the required form.\newlineWe have 1.44(1.2x)1.44^{(-1.2 x)} and we want it to be in the form A(x)A^{(x)}. To find AA, we need to isolate the base of the exponent such that the exponent is just xx.
  3. Identify base: Identify the base AA.\newlineSince the exponent in the given function is 1.2x-1.2x, we can equate AA to 1.441.44 raised to the power of 1.2-1.2 to get the base in terms of xx.\newlineA=1.441.2A = 1.44^{-1.2}
  4. Match choices: Match the expression for AA with the given choices.\newlineLooking at the choices provided, we see that choice (B) A=1.441.2A=1.44^{-1.2} matches our expression for AA.

More problems from Compare linear and exponential growth