Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the area of the region between the graphs of 
f(x)=sqrt(x+10) and 
g(x)=x-2 from 
x=-10 to 
x=6 ?
Choose 1 answer:
(A) 
(320)/(3)
(B) 128
(C) 
160
(D) 
(64)/(3)

What is the area of the region between the graphs of f(x)=x+10 f(x)=\sqrt{x+10} and g(x)=x2 g(x)=x-2 from x=10 x=-10 to x=6 x=6 ?\newlineChoose 11 answer:\newline(A) 3203 \frac{320}{3} \newline(B) 128128\newline(C) 160 \mathbf{1 6 0} \newline(D) 643 \frac{64}{3}

Full solution

Q. What is the area of the region between the graphs of f(x)=x+10 f(x)=\sqrt{x+10} and g(x)=x2 g(x)=x-2 from x=10 x=-10 to x=6 x=6 ?\newlineChoose 11 answer:\newline(A) 3203 \frac{320}{3} \newline(B) 128128\newline(C) 160 \mathbf{1 6 0} \newline(D) 643 \frac{64}{3}
  1. Understand the problem: Understand the problem.\newlineWe need to find the area between two curves, f(x)=x+10f(x) = \sqrt{x+10} and g(x)=x2g(x) = x-2, from x=10x = -10 to x=6x = 6. The area between two curves is found by integrating the absolute difference of the functions over the given interval.
  2. Set up the integral: Set up the integral to find the area.\newlineThe area AA between the two curves from x=ax = a to x=bx = b is given by the integral A=abf(x)g(x)dxA = \int_{a}^{b} |f(x) - g(x)| \, dx. In this case, we need to find 106x+10(x2)dx\int_{-10}^{6} |\sqrt{x+10} - (x-2)| \, dx.
  3. Determine the points of intersection: Determine the points of intersection.\newlineTo properly set up the integral, we need to know where the graphs of f(x)f(x) and g(x)g(x) intersect, as this will affect the limits of integration if they intersect within the interval [10,6][-10, 6]. We set f(x)=g(x)f(x) = g(x) and solve for xx:\newlinex+10=x2\sqrt{x+10} = x-2\newlineSquaring both sides, we get:\newlinex+10=(x2)2x + 10 = (x - 2)^2\newlinex+10=x24x+4x + 10 = x^2 - 4x + 4\newline0=x25x60 = x^2 - 5x - 6\newlineFactoring, we get:\newline0=(x6)(x+1)0 = (x - 6)(x + 1)\newlineSo, the points of intersection are g(x)g(x)00 and g(x)g(x)11.
  4. Split the integral if necessary: Split the integral if necessary.\newlineSince the intersection points are within the interval [10,6][-10, 6], we need to split the integral at x=1x = -1. We will integrate from 10-10 to 1-1 where g(x)g(x) is greater than f(x)f(x), and from 1-1 to 66 where f(x)f(x) is greater than g(x)g(x). This gives us two integrals:\newlinex=1x = -100.
  5. Calculate the first integral: Calculate the first integral from 10-10 to 1-1.
    A1=101(x2x+10)dxA_1 = \int_{-10}^{-1} (x-2 - \sqrt{x+10}) \, dx
    = 101(x2)dx101x+10dx\int_{-10}^{-1} (x - 2) \, dx - \int_{-10}^{-1} \sqrt{x+10} \, dx
    = [12x22x]101[23(x+10)32]101[\frac{1}{2} * x^2 - 2x]_{-10}^{-1} - [\frac{2}{3} * (x+10)^{\frac{3}{2}}]_{-10}^{-1}
    = [(12(1)22(1))(12(10)22(10))][(23(1+10)32)(23(0)32)][(\frac{1}{2} * (-1)^2 - 2*(-1)) - (\frac{1}{2} * (-10)^2 - 2*(-10))] - [(\frac{2}{3} * (-1+10)^{\frac{3}{2}}) - (\frac{2}{3} * (0)^{\frac{3}{2}})]
    = [(122)(50+20)][(23932)0][(\frac{1}{2} - 2) - (50 + 20)] - [(\frac{2}{3} * 9^{\frac{3}{2}}) - 0]
    = [(32)70][(2327)0][(-\frac{3}{2}) - 70] - [(\frac{2}{3} * 27) - 0]
    = [71.518][-71.5 - 18]
    = 89.5-89.5
  6. Calculate the second integral: Calculate the second integral from 1-1 to 66.
    A2=16(x+10(x2))dxA_2 = \int_{-1}^{6} (\sqrt{x+10} - (x-2)) \,dx
    = 16x+10dx\int_{-1}^{6} \sqrt{x+10} \,dx - 16(x2)dx\int_{-1}^{6} (x - 2) \,dx
    = [23(x+10)32][\frac{2}{3} * (x+10)^{\frac{3}{2}}] from 1-1 to 66 - [12x22x][\frac{1}{2} * x^2 - 2x] from 1-1 to 66
    = 6611 - (\frac{22}{33} * (1-1+1010)^{\frac{33}{22}})\] - 6622
    = 6633 - (\frac{22}{33} * 99^{\frac{33}{22}})\] - 6644
    = 6655
    = 6666
    = 6677
    = \frac{6363.55}{33}\
    = 6688
  7. Add the absolute values: Add the absolute values of the two areas.\newlineSince we are looking for the area between the curves, we take the absolute value of each integral result (if negative) and sum them up to get the total area.\newlineTotal Area = A1+A2|A_1| + |A_2|\newline= 89.5+21.167|-89.5| + |21.167|\newline= 89.5+21.16789.5 + 21.167\newline= 110.667110.667
  8. Choose the correct answer: Choose the correct answer.\newlineThe total area calculated does not match any of the provided answer choices, which suggests there might be a mistake in the calculations. We need to re-evaluate the integrals and ensure that the calculations are correct.

More problems from Euler's method