Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the area of the region between the graphs of 
f(x)=(4)/(x),g(x)=4, and 
x=4 ?
Choose 1 answer:
(A) 
24-4ln(3)
(B) 
24-4ln(4)
(C) 
12-4ln(3)
(D) 
12-4ln(4)

What is the area of the region between the graphs of f(x)=4x,g(x)=4 f(x)=\frac{4}{x}, g(x)=4 , and x=4 x=4 ?\newlineChoose 11 answer:\newline(A) 244ln(3) 24-4 \ln (3) \newline(B) 244ln(4) 24-4 \ln (4) \newline(C) 124ln(3) 12-4 \ln (3) \newline(D) 124ln(4) 12-4 \ln (4)

Full solution

Q. What is the area of the region between the graphs of f(x)=4x,g(x)=4 f(x)=\frac{4}{x}, g(x)=4 , and x=4 x=4 ?\newlineChoose 11 answer:\newline(A) 244ln(3) 24-4 \ln (3) \newline(B) 244ln(4) 24-4 \ln (4) \newline(C) 124ln(3) 12-4 \ln (3) \newline(D) 124ln(4) 12-4 \ln (4)
  1. Intersection Point Calculation: To find the area between the curves, we need to set up an integral from the left boundary of the region to the right boundary. The left boundary is where the two functions intersect, and the right boundary is given as x=4x=4. First, we need to find the intersection point of f(x)f(x) and g(x)g(x).
  2. Setting up Integral: The intersection point occurs where f(x)=g(x)f(x) = g(x). So we set 4x=4\frac{4}{x} = 4 and solve for xx.
    4x=4\frac{4}{x} = 4
    4=4x4 = 4x
    x=1x = 1
    The functions intersect at x=1x=1.
  3. Integration: Now we can set up the integral from x=1x=1 to x=4x=4. The area AA between the curves is the integral of the top function minus the bottom function from x=1x=1 to x=4x=4.A=x=1x=4(g(x)f(x))dxA = \int_{x=1}^{x=4} (g(x) - f(x)) \, dxA=x=1x=4(44x)dxA = \int_{x=1}^{x=4} (4 - \frac{4}{x}) \, dx
  4. Evaluate Integral: We can now integrate the function from x=1x=1 to x=4x=4.
    A=x=1x=44dxx=1x=44xdxA = \int_{x=1}^{x=4} 4 \, dx - \int_{x=1}^{x=4} \frac{4}{x} \, dx
    A=[4x]x=1x=4[4lnx]x=1x=4A = [4x]_{x=1}^{x=4} - [4\ln|x|]_{x=1}^{x=4}
  5. Final Area Calculation: Evaluating the integrals, we get:\newlineA=(4×44×1)(4ln44ln1)A = (4\times 4 - 4\times 1) - (4\ln|4| - 4\ln|1|)\newlineA=(164)(4ln(4)4ln(1))A = (16 - 4) - (4\ln(4) - 4\ln(1))\newlineSince ln(1)=0\ln(1) = 0, we simplify further.\newlineA=124ln(4)A = 12 - 4\ln(4)
  6. Final Area Calculation: Evaluating the integrals, we get:\newlineA=(4×44×1)(4ln44ln1)A = (4\times4 - 4\times1) - (4\ln|4| - 4\ln|1|)\newlineA=(164)(4ln(4)4ln(1))A = (16 - 4) - (4\ln(4) - 4\ln(1))\newlineSince ln(1)=0\ln(1) = 0, we simplify further.\newlineA=124ln(4)A = 12 - 4\ln(4)We have found the area of the region between the graphs of f(x)=(4)/(x)f(x)=(4)/(x), g(x)=4g(x)=4, and x=4x=4.\newlineThe final answer is A=124ln(4)A = 12 - 4\ln(4), which corresponds to answer choice (D).

More problems from Write a quadratic function from its x-intercepts and another point