Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Three points on the graph of the function 
f(x) are 
{(0,6),(1,7),(2,10)}. Which equation represents 
f(x) ?

f(x)=6*((7)/(6))^(x)

f(x)=3x+4

f(x)=x+6

f(x)=x^(2)+6

Three points on the graph of the function f(x) f(x) are {(0,6),(1,7),(2,10)} \{(0,6),(1,7),(2,10)\} . Which equation represents f(x) f(x) ?\newlinef(x)=6(76)x f(x)=6 \cdot\left(\frac{7}{6}\right)^{x} \newlinef(x)=3x+4 f(x)=3 x+4 \newlinef(x)=x+6 f(x)=x+6 \newlinef(x)=x2+6 f(x)=x^{2}+6

Full solution

Q. Three points on the graph of the function f(x) f(x) are {(0,6),(1,7),(2,10)} \{(0,6),(1,7),(2,10)\} . Which equation represents f(x) f(x) ?\newlinef(x)=6(76)x f(x)=6 \cdot\left(\frac{7}{6}\right)^{x} \newlinef(x)=3x+4 f(x)=3 x+4 \newlinef(x)=x+6 f(x)=x+6 \newlinef(x)=x2+6 f(x)=x^{2}+6
  1. Check Function 11: We will test each given function with the points provided to see which one matches all the points.\newlineLet's start with the first option: f(x)=6×(76)xf(x) = 6 \times \left(\frac{7}{6}\right)^{x}.\newlineWe will plug in x=0x = 0 and check if f(0)=6f(0) = 6.\newlinef(0)=6×(76)0=6×1=6f(0) = 6 \times \left(\frac{7}{6}\right)^{0} = 6 \times 1 = 6.
  2. Check Function 11: Now we will plug in x=1x = 1 and check if f(1)=7f(1) = 7.\newlinef(1)=6×(76)1=6×(76)=7f(1) = 6 \times \left(\frac{7}{6}\right)^{1} = 6 \times \left(\frac{7}{6}\right) = 7.
  3. Check Function 11: Next, we will plug in x=2x = 2 and check if f(2)=10f(2) = 10.f(2)=6×(76)2=6×(4936)=496f(2) = 6 \times \left(\frac{7}{6}\right)^{2} = 6 \times \left(\frac{49}{36}\right) = \frac{49}{6}.496\frac{49}{6} does not equal 1010, so this function does not represent f(x)f(x) for all given points.
  4. Check Function 22: Let's move on to the second option: f(x)=3x+4f(x) = 3x + 4.\newlineWe will plug in x=0x = 0 and check if f(0)=6f(0) = 6.\newlinef(0)=3×0+4=4f(0) = 3 \times 0 + 4 = 4.\newline44 does not equal 66, so this function does not represent f(x)f(x) for all given points.

More problems from Operations with rational exponents