Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Three points on the graph of the function 
f(x) are 
{(0,2),(1,4),(2,6)}. Which equation represents 
f(x) ?

f(x)=x^(2)+2

f(x)=2x+4

f(x)=2*2^(x)

f(x)=2x+2

Three points on the graph of the function f(x) f(x) are {(0,2),(1,4),(2,6)} \{(0,2),(1,4),(2,6)\} . Which equation represents f(x) f(x) ?\newlinef(x)=x2+2 f(x)=x^{2}+2 \newlinef(x)=2x+4 f(x)=2 x+4 \newlinef(x)=22x f(x)=2 \cdot 2^{x} \newlinef(x)=2x+2 f(x)=2 x+2

Full solution

Q. Three points on the graph of the function f(x) f(x) are {(0,2),(1,4),(2,6)} \{(0,2),(1,4),(2,6)\} . Which equation represents f(x) f(x) ?\newlinef(x)=x2+2 f(x)=x^{2}+2 \newlinef(x)=2x+4 f(x)=2 x+4 \newlinef(x)=22x f(x)=2 \cdot 2^{x} \newlinef(x)=2x+2 f(x)=2 x+2
  1. Test Function (0,2)(0,2): We will test each given function with the points provided to see which one matches all the points.\newlineFirst, let's test the point (0,2)(0,2) with each function.
  2. Test Function (1,4)(1,4): Testing f(x)=x2+2f(x) = x^2 + 2 with (0,2)(0,2):\newlinef(0)=02+2=2f(0) = 0^2 + 2 = 2.\newlineThis matches the point (0,2)(0,2).
  3. Test Function 2,62,6: Testing f(x)=2x+4f(x) = 2x + 4 with 0,20,2:f(0)=20+4=4.f(0) = 2\cdot 0 + 4 = 4.This does not match the point 0,20,2. We can stop considering this function.
  4. Test Function (2,6)(2,6): Testing f(x)=2x+4f(x) = 2x + 4 with (0,2)(0,2):
    f(0)=20+4=4f(0) = 2\cdot0 + 4 = 4.
    This does not match the point (0,2)(0,2).
    We can stop considering this function.Testing f(x)=22xf(x) = 2\cdot2^x with (0,2)(0,2):
    f(0)=220=21=2f(0) = 2\cdot2^0 = 2\cdot1 = 2.
    This matches the point (0,2)(0,2).
  5. Test Function (22,66): Testing f(x)=2x+4f(x) = 2x + 4 with (0,2)(0,2):
    f(0)=20+4=4f(0) = 2\cdot0 + 4 = 4.
    This does not match the point (0,2)(0,2).
    We can stop considering this function.Testing f(x)=22xf(x) = 2\cdot2^x with (0,2)(0,2):
    f(0)=220=21=2f(0) = 2\cdot2^0 = 2\cdot1 = 2.
    This matches the point (0,2)(0,2).Testing f(x)=2x+2f(x) = 2x + 2 with (0,2)(0,2):
    (0,2)(0,2)00.
    This matches the point (0,2)(0,2).
  6. Test Function (22,66): Testing f(x)=2x+4f(x) = 2x + 4 with (0,2)(0,2):
    f(0)=20+4=4f(0) = 2\cdot0 + 4 = 4.
    This does not match the point (0,2)(0,2).
    We can stop considering this function.Testing f(x)=22xf(x) = 2\cdot2^x with (0,2)(0,2):
    f(0)=220=21=2f(0) = 2\cdot2^0 = 2\cdot1 = 2.
    This matches the point (0,2)(0,2).Testing f(x)=2x+2f(x) = 2x + 2 with (0,2)(0,2):
    (0,2)(0,2)00.
    This matches the point (0,2)(0,2).Now let's test the point (0,2)(0,2)22 with the remaining functions that matched the first point.
  7. Test Function (22,66): Testing f(x)=2x+4f(x) = 2x + 4 with (0,2)(0,2):
    f(0)=20+4=4f(0) = 2\cdot0 + 4 = 4.
    This does not match the point (0,2)(0,2).
    We can stop considering this function.Testing f(x)=22xf(x) = 2\cdot2^x with (0,2)(0,2):
    f(0)=220=21=2f(0) = 2\cdot2^0 = 2\cdot1 = 2.
    This matches the point (0,2)(0,2).Testing f(x)=2x+2f(x) = 2x + 2 with (0,2)(0,2):
    (0,2)(0,2)00.
    This matches the point (0,2)(0,2).Now let's test the point (0,2)(0,2)22 with the remaining functions that matched the first point.Testing (0,2)(0,2)33 with (0,2)(0,2)22:
    (0,2)(0,2)55.
    This does not match the point (0,2)(0,2)22.
    We can stop considering this function.
  8. Test Function (22,66): Testing f(x)=2x+4f(x) = 2x + 4 with (0,2)(0,2):
    f(0)=20+4=4f(0) = 2\cdot0 + 4 = 4.
    This does not match the point (0,2)(0,2).
    We can stop considering this function.Testing f(x)=22xf(x) = 2\cdot2^x with (0,2)(0,2):
    f(0)=220=21=2f(0) = 2\cdot2^0 = 2\cdot1 = 2.
    This matches the point (0,2)(0,2).Testing f(x)=2x+2f(x) = 2x + 2 with (0,2)(0,2):
    (0,2)(0,2)00.
    This matches the point (0,2)(0,2).Now let's test the point (0,2)(0,2)22 with the remaining functions that matched the first point.Testing (0,2)(0,2)33 with (0,2)(0,2)22:
    (0,2)(0,2)55.
    This does not match the point (0,2)(0,2)22.
    We can stop considering this function.Testing f(x)=22xf(x) = 2\cdot2^x with (0,2)(0,2)22:
    (0,2)(0,2)99.
    This matches the point (0,2)(0,2)22.
  9. Test Function (22,66): Testing f(x)=2x+4f(x) = 2x + 4 with (0,2)(0,2):
    f(0)=20+4=4f(0) = 2\cdot0 + 4 = 4.
    This does not match the point (0,2)(0,2).
    We can stop considering this function.Testing f(x)=22xf(x) = 2\cdot2^x with (0,2)(0,2):
    f(0)=220=21=2f(0) = 2\cdot2^0 = 2\cdot1 = 2.
    This matches the point (0,2)(0,2).Testing f(x)=2x+2f(x) = 2x + 2 with (0,2)(0,2):
    (0,2)(0,2)00.
    This matches the point (0,2)(0,2).Now let's test the point (0,2)(0,2)22 with the remaining functions that matched the first point.Testing (0,2)(0,2)33 with (0,2)(0,2)22:
    (0,2)(0,2)55.
    This does not match the point (0,2)(0,2)22.
    We can stop considering this function.Testing f(x)=22xf(x) = 2\cdot2^x with (0,2)(0,2)22:
    (0,2)(0,2)99.
    This matches the point (0,2)(0,2)22.Testing f(x)=2x+2f(x) = 2x + 2 with (0,2)(0,2)22:
    f(0)=20+4=4f(0) = 2\cdot0 + 4 = 433.
    This matches the point (0,2)(0,2)22.
  10. Test Function (22,66): Testing f(x)=2x+4f(x) = 2x + 4 with (0,2)(0,2):
    f(0)=20+4=4f(0) = 2\cdot0 + 4 = 4.
    This does not match the point (0,2)(0,2).
    We can stop considering this function.Testing f(x)=22xf(x) = 2\cdot2^x with (0,2)(0,2):
    f(0)=220=21=2f(0) = 2\cdot2^0 = 2\cdot1 = 2.
    This matches the point (0,2)(0,2).Testing f(x)=2x+2f(x) = 2x + 2 with (0,2)(0,2):
    (0,2)(0,2)00.
    This matches the point (0,2)(0,2).Now let's test the point (0,2)(0,2)22 with the remaining functions that matched the first point.Testing (0,2)(0,2)33 with (0,2)(0,2)22:
    (0,2)(0,2)55.
    This does not match the point (0,2)(0,2)22.
    We can stop considering this function.Testing f(x)=22xf(x) = 2\cdot2^x with (0,2)(0,2)22:
    (0,2)(0,2)99.
    This matches the point (0,2)(0,2)22.Testing f(x)=2x+2f(x) = 2x + 2 with (0,2)(0,2)22:
    f(0)=20+4=4f(0) = 2\cdot0 + 4 = 433.
    This matches the point (0,2)(0,2)22.Finally, let's test the point f(0)=20+4=4f(0) = 2\cdot0 + 4 = 455 with the remaining functions that matched the first two points.
  11. Test Function (22,66): Testing f(x)=2x+4f(x) = 2x + 4 with (0,2)(0,2):
    f(0)=20+4=4f(0) = 2\cdot0 + 4 = 4.
    This does not match the point (0,2)(0,2).
    We can stop considering this function.Testing f(x)=22xf(x) = 2\cdot2^x with (0,2)(0,2):
    f(0)=220=21=2f(0) = 2\cdot2^0 = 2\cdot1 = 2.
    This matches the point (0,2)(0,2).Testing f(x)=2x+2f(x) = 2x + 2 with (0,2)(0,2):
    (0,2)(0,2)00.
    This matches the point (0,2)(0,2).Now let's test the point (0,2)(0,2)22 with the remaining functions that matched the first point.Testing (0,2)(0,2)33 with (0,2)(0,2)22:
    (0,2)(0,2)55.
    This does not match the point (0,2)(0,2)22.
    We can stop considering this function.Testing f(x)=22xf(x) = 2\cdot2^x with (0,2)(0,2)22:
    (0,2)(0,2)99.
    This matches the point (0,2)(0,2)22.Testing f(x)=2x+2f(x) = 2x + 2 with (0,2)(0,2)22:
    f(0)=20+4=4f(0) = 2\cdot0 + 4 = 433.
    This matches the point (0,2)(0,2)22.Finally, let's test the point f(0)=20+4=4f(0) = 2\cdot0 + 4 = 455 with the remaining functions that matched the first two points.Testing f(x)=22xf(x) = 2\cdot2^x with f(0)=20+4=4f(0) = 2\cdot0 + 4 = 455:
    f(0)=20+4=4f(0) = 2\cdot0 + 4 = 488.
    This does not match the point f(0)=20+4=4f(0) = 2\cdot0 + 4 = 455.
    We can stop considering this function.
  12. Test Function (22,66): Testing f(x)=2x+4f(x) = 2x + 4 with (0,2)(0,2):
    f(0)=20+4=4f(0) = 2\cdot0 + 4 = 4.
    This does not match the point (0,2)(0,2).
    We can stop considering this function.Testing f(x)=22xf(x) = 2\cdot2^x with (0,2)(0,2):
    f(0)=220=21=2f(0) = 2\cdot2^0 = 2\cdot1 = 2.
    This matches the point (0,2)(0,2).Testing f(x)=2x+2f(x) = 2x + 2 with (0,2)(0,2):
    (0,2)(0,2)00.
    This matches the point (0,2)(0,2).Now let's test the point (0,2)(0,2)22 with the remaining functions that matched the first point.Testing (0,2)(0,2)33 with (0,2)(0,2)22:
    (0,2)(0,2)55.
    This does not match the point (0,2)(0,2)22.
    We can stop considering this function.Testing f(x)=22xf(x) = 2\cdot2^x with (0,2)(0,2)22:
    (0,2)(0,2)99.
    This matches the point (0,2)(0,2)22.Testing f(x)=2x+2f(x) = 2x + 2 with (0,2)(0,2)22:
    f(0)=20+4=4f(0) = 2\cdot0 + 4 = 433.
    This matches the point (0,2)(0,2)22.Finally, let's test the point f(0)=20+4=4f(0) = 2\cdot0 + 4 = 455 with the remaining functions that matched the first two points.Testing f(x)=22xf(x) = 2\cdot2^x with f(0)=20+4=4f(0) = 2\cdot0 + 4 = 455:
    f(0)=20+4=4f(0) = 2\cdot0 + 4 = 488.
    This does not match the point f(0)=20+4=4f(0) = 2\cdot0 + 4 = 455.
    We can stop considering this function.Testing f(x)=2x+2f(x) = 2x + 2 with f(0)=20+4=4f(0) = 2\cdot0 + 4 = 455:
    (0,2)(0,2)22.
    This matches the point f(0)=20+4=4f(0) = 2\cdot0 + 4 = 455.
  13. Test Function (22,66): Testing f(x)=2x+4f(x) = 2x + 4 with (0,2)(0,2):
    f(0)=20+4=4f(0) = 2\cdot0 + 4 = 4.
    This does not match the point (0,2)(0,2).
    We can stop considering this function.
    Testing f(x)=22xf(x) = 2\cdot2^x with (0,2)(0,2):
    f(0)=220=21=2f(0) = 2\cdot2^0 = 2\cdot1 = 2.
    This matches the point (0,2)(0,2).
    Testing f(x)=2x+2f(x) = 2x + 2 with (0,2)(0,2):
    (0,2)(0,2)00.
    This matches the point (0,2)(0,2).
    Now let's test the point (0,2)(0,2)22 with the remaining functions that matched the first point.
    Testing (0,2)(0,2)33 with (0,2)(0,2)22:
    (0,2)(0,2)55.
    This does not match the point (0,2)(0,2)22.
    We can stop considering this function.
    Testing f(x)=22xf(x) = 2\cdot2^x with (0,2)(0,2)22:
    (0,2)(0,2)99.
    This matches the point (0,2)(0,2)22.
    Testing f(x)=2x+2f(x) = 2x + 2 with (0,2)(0,2)22:
    f(0)=20+4=4f(0) = 2\cdot0 + 4 = 433.
    This matches the point (0,2)(0,2)22.
    Finally, let's test the point f(0)=20+4=4f(0) = 2\cdot0 + 4 = 455 with the remaining functions that matched the first two points.
    Testing f(x)=22xf(x) = 2\cdot2^x with f(0)=20+4=4f(0) = 2\cdot0 + 4 = 455:
    f(0)=20+4=4f(0) = 2\cdot0 + 4 = 488.
    This does not match the point f(0)=20+4=4f(0) = 2\cdot0 + 4 = 455.
    We can stop considering this function.
    Testing f(x)=2x+2f(x) = 2x + 2 with f(0)=20+4=4f(0) = 2\cdot0 + 4 = 455:
    (0,2)(0,2)22.
    This matches the point f(0)=20+4=4f(0) = 2\cdot0 + 4 = 455.
    Since the function f(x)=2x+2f(x) = 2x + 2 is the only function that matches all three points, this is the equation that represents (0,2)(0,2)55.

More problems from Compare linear and exponential growth