Q. Three points on the graph of the function f(x) are {(0,2),(1,4),(2,6)}. Which equation represents f(x) ?f(x)=x2+2f(x)=2x+4f(x)=2⋅2xf(x)=2x+2
Test Function (0,2): We will test each given function with the points provided to see which one matches all the points.First, let's test the point (0,2) with each function.
Test Function (1,4): Testing f(x)=x2+2 with (0,2):f(0)=02+2=2.This matches the point (0,2).
Test Function 2,6: Testing f(x)=2x+4 with 0,2:f(0)=2⋅0+4=4.This does not match the point 0,2. We can stop considering this function.
Test Function (2,6): Testing f(x)=2x+4 with (0,2): f(0)=2⋅0+4=4. This does not match the point (0,2). We can stop considering this function.Testing f(x)=2⋅2x with (0,2): f(0)=2⋅20=2⋅1=2. This matches the point (0,2).
Test Function (2,6): Testing f(x)=2x+4 with (0,2): f(0)=2⋅0+4=4. This does not match the point (0,2). We can stop considering this function.Testing f(x)=2⋅2x with (0,2): f(0)=2⋅20=2⋅1=2. This matches the point (0,2).Testing f(x)=2x+2 with (0,2): (0,2)0. This matches the point (0,2).
Test Function (2,6): Testing f(x)=2x+4 with (0,2): f(0)=2⋅0+4=4. This does not match the point (0,2). We can stop considering this function.Testing f(x)=2⋅2x with (0,2): f(0)=2⋅20=2⋅1=2. This matches the point (0,2).Testing f(x)=2x+2 with (0,2): (0,2)0. This matches the point (0,2).Now let's test the point (0,2)2 with the remaining functions that matched the first point.
Test Function (2,6): Testing f(x)=2x+4 with (0,2): f(0)=2⋅0+4=4. This does not match the point (0,2). We can stop considering this function.Testing f(x)=2⋅2x with (0,2): f(0)=2⋅20=2⋅1=2. This matches the point (0,2).Testing f(x)=2x+2 with (0,2): (0,2)0. This matches the point (0,2).Now let's test the point (0,2)2 with the remaining functions that matched the first point.Testing (0,2)3 with (0,2)2: (0,2)5. This does not match the point (0,2)2. We can stop considering this function.
Test Function (2,6): Testing f(x)=2x+4 with (0,2): f(0)=2⋅0+4=4. This does not match the point (0,2). We can stop considering this function.Testing f(x)=2⋅2x with (0,2): f(0)=2⋅20=2⋅1=2. This matches the point (0,2).Testing f(x)=2x+2 with (0,2): (0,2)0. This matches the point (0,2).Now let's test the point (0,2)2 with the remaining functions that matched the first point.Testing (0,2)3 with (0,2)2: (0,2)5. This does not match the point (0,2)2. We can stop considering this function.Testing f(x)=2⋅2x with (0,2)2: (0,2)9. This matches the point (0,2)2.
Test Function (2,6): Testing f(x)=2x+4 with (0,2): f(0)=2⋅0+4=4. This does not match the point (0,2). We can stop considering this function.Testing f(x)=2⋅2x with (0,2): f(0)=2⋅20=2⋅1=2. This matches the point (0,2).Testing f(x)=2x+2 with (0,2): (0,2)0. This matches the point (0,2).Now let's test the point (0,2)2 with the remaining functions that matched the first point.Testing (0,2)3 with (0,2)2: (0,2)5. This does not match the point (0,2)2. We can stop considering this function.Testing f(x)=2⋅2x with (0,2)2: (0,2)9. This matches the point (0,2)2.Testing f(x)=2x+2 with (0,2)2: f(0)=2⋅0+4=43. This matches the point (0,2)2.
Test Function (2,6): Testing f(x)=2x+4 with (0,2): f(0)=2⋅0+4=4. This does not match the point (0,2). We can stop considering this function.Testing f(x)=2⋅2x with (0,2): f(0)=2⋅20=2⋅1=2. This matches the point (0,2).Testing f(x)=2x+2 with (0,2): (0,2)0. This matches the point (0,2).Now let's test the point (0,2)2 with the remaining functions that matched the first point.Testing (0,2)3 with (0,2)2: (0,2)5. This does not match the point (0,2)2. We can stop considering this function.Testing f(x)=2⋅2x with (0,2)2: (0,2)9. This matches the point (0,2)2.Testing f(x)=2x+2 with (0,2)2: f(0)=2⋅0+4=43. This matches the point (0,2)2.Finally, let's test the point f(0)=2⋅0+4=45 with the remaining functions that matched the first two points.
Test Function (2,6): Testing f(x)=2x+4 with (0,2): f(0)=2⋅0+4=4. This does not match the point (0,2). We can stop considering this function.Testing f(x)=2⋅2x with (0,2): f(0)=2⋅20=2⋅1=2. This matches the point (0,2).Testing f(x)=2x+2 with (0,2): (0,2)0. This matches the point (0,2).Now let's test the point (0,2)2 with the remaining functions that matched the first point.Testing (0,2)3 with (0,2)2: (0,2)5. This does not match the point (0,2)2. We can stop considering this function.Testing f(x)=2⋅2x with (0,2)2: (0,2)9. This matches the point (0,2)2.Testing f(x)=2x+2 with (0,2)2: f(0)=2⋅0+4=43. This matches the point (0,2)2.Finally, let's test the point f(0)=2⋅0+4=45 with the remaining functions that matched the first two points.Testing f(x)=2⋅2x with f(0)=2⋅0+4=45: f(0)=2⋅0+4=48. This does not match the point f(0)=2⋅0+4=45. We can stop considering this function.
Test Function (2,6): Testing f(x)=2x+4 with (0,2): f(0)=2⋅0+4=4. This does not match the point (0,2). We can stop considering this function.Testing f(x)=2⋅2x with (0,2): f(0)=2⋅20=2⋅1=2. This matches the point (0,2).Testing f(x)=2x+2 with (0,2): (0,2)0. This matches the point (0,2).Now let's test the point (0,2)2 with the remaining functions that matched the first point.Testing (0,2)3 with (0,2)2: (0,2)5. This does not match the point (0,2)2. We can stop considering this function.Testing f(x)=2⋅2x with (0,2)2: (0,2)9. This matches the point (0,2)2.Testing f(x)=2x+2 with (0,2)2: f(0)=2⋅0+4=43. This matches the point (0,2)2.Finally, let's test the point f(0)=2⋅0+4=45 with the remaining functions that matched the first two points.Testing f(x)=2⋅2x with f(0)=2⋅0+4=45: f(0)=2⋅0+4=48. This does not match the point f(0)=2⋅0+4=45. We can stop considering this function.Testing f(x)=2x+2 with f(0)=2⋅0+4=45: (0,2)2. This matches the point f(0)=2⋅0+4=45.
Test Function (2,6): Testing f(x)=2x+4 with (0,2): f(0)=2⋅0+4=4. This does not match the point (0,2). We can stop considering this function. Testing f(x)=2⋅2x with (0,2): f(0)=2⋅20=2⋅1=2. This matches the point (0,2). Testing f(x)=2x+2 with (0,2): (0,2)0. This matches the point (0,2). Now let's test the point (0,2)2 with the remaining functions that matched the first point. Testing (0,2)3 with (0,2)2: (0,2)5. This does not match the point (0,2)2. We can stop considering this function. Testing f(x)=2⋅2x with (0,2)2: (0,2)9. This matches the point (0,2)2. Testing f(x)=2x+2 with (0,2)2: f(0)=2⋅0+4=43. This matches the point (0,2)2. Finally, let's test the point f(0)=2⋅0+4=45 with the remaining functions that matched the first two points. Testing f(x)=2⋅2x with f(0)=2⋅0+4=45: f(0)=2⋅0+4=48. This does not match the point f(0)=2⋅0+4=45. We can stop considering this function. Testing f(x)=2x+2 with f(0)=2⋅0+4=45: (0,2)2. This matches the point f(0)=2⋅0+4=45. Since the function f(x)=2x+2 is the only function that matches all three points, this is the equation that represents (0,2)5.
More problems from Compare linear and exponential growth