Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The radius of a sphere is increasing at a rate of 0.5 centimeters per minute.
At a certain instant, the radius is 17 centimeters.
What is the rate of change of the volume of the sphere at that instant (in cubic centimeters per minute)?
Choose 1 answer:
(A) 
(1)/(6)pi
(B) 
289 pi
(C) 
578 pi
(D) 
3275 pi
The volume of a sphere with radius 
r is 
(4)/(3)pir^(3).

The radius of a sphere is increasing at a rate of 00.55 centimeters per minute.\newlineAt a certain instant, the radius is 1717 centimeters.\newlineWhat is the rate of change of the volume of the sphere at that instant (in cubic centimeters per minute)?\newlineChoose 11 answer:\newline(A) 16π \frac{1}{6} \pi \newline(B) 289π 289 \pi \newline(C) 578π 578 \pi \newline(D) 3275π 3275 \pi \newlineThe volume of a sphere with radius r r is 43πr3 \frac{4}{3} \pi r^{3} .

Full solution

Q. The radius of a sphere is increasing at a rate of 00.55 centimeters per minute.\newlineAt a certain instant, the radius is 1717 centimeters.\newlineWhat is the rate of change of the volume of the sphere at that instant (in cubic centimeters per minute)?\newlineChoose 11 answer:\newline(A) 16π \frac{1}{6} \pi \newline(B) 289π 289 \pi \newline(C) 578π 578 \pi \newline(D) 3275π 3275 \pi \newlineThe volume of a sphere with radius r r is 43πr3 \frac{4}{3} \pi r^{3} .
  1. Volume Formula: The formula for the volume of a sphere is V=43πr3V = \frac{4}{3}\pi r^3. We need to find dVdt\frac{dV}{dt}, the rate of change of volume with respect to time.
  2. Differentiate VV: First, differentiate V=43πr3V = \frac{4}{3}\pi r^3 with respect to rr to get dVdr\frac{dV}{dr}. dVdr=4πr2\frac{dV}{dr} = 4\pi r^2.
  3. Chain Rule: Now, use the chain rule to find dVdt\frac{dV}{dt}. dVdt=dVdrdrdt\frac{dV}{dt} = \frac{dV}{dr} \cdot \frac{dr}{dt}. We know drdt=0.5cm/min\frac{dr}{dt} = 0.5 \, \text{cm/min}.
  4. Substitute Values: Substitute r=17r = 17 cm and drdt=0.5\frac{dr}{dt} = 0.5 cm/min into dVdt=4πr2drdt\frac{dV}{dt} = 4\pi r^2 \cdot \frac{dr}{dt}. dVdt=4π(17)20.5\frac{dV}{dt} = 4\pi(17)^2 \cdot 0.5.
  5. Calculate dVdt\frac{dV}{dt}: Calculate the value of dVdt\frac{dV}{dt}. dVdt=4π(289)×0.5=4π×289×0.5=578π\frac{dV}{dt} = 4\pi(289) \times 0.5 = 4\pi \times 289 \times 0.5 = 578\pi.
  6. Final Answer: The rate of change of the volume of the sphere at that instant is 578π578\pi cubic centimeters per minute, which corresponds to answer choice (C)(C).

More problems from Solve quadratic equations: word problems