The functions g(x) and h(x) are differentiable. The function i(x) is defined as: i(x)=h(x)g(x)If g(8)=4, g′(8)=3, h(8)=2, and h′(8)=−4, what is i′(8)? Simplify any fractions. i′(8)= _____
Q. The functions g(x) and h(x) are differentiable. The function i(x) is defined as: i(x)=h(x)g(x)If g(8)=4, g′(8)=3, h(8)=2, and h′(8)=−4, what is i′(8)? Simplify any fractions. i′(8)= _____
Apply Quotient Rule: Use the quotient rule for differentiation: (vu)′=v2u′v−uv′. Here, u=g(x) and v=h(x).
Calculate Derivatives: Calculate u′(8) and v′(8) using the given derivatives: u′(8)=g′(8)=3, v′(8)=h′(8)=−4.
Calculate Function Values: Calculate u(8) and v(8) using the given function values: u(8)=g(8)=4, v(8)=h(8)=2.
Plug into Formula: Plug the values into the quotient rule formula: i′(8)=(22)(3×2−4×−4).
Simplify Numerator: Simplify the numerator: i′(8)=4(6+16).
Simplify Fraction: Simplify the fraction: i(8)=422.
Reduce to Lowest Terms: Reduce the fraction to lowest terms: i(8)=211.
More problems from Compare linear and exponential growth