Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The functions a(x) a(x) and b(x) b(x) are differentiable. \newlineThe function c(x) c(x) is defined as: c(x)=a(x)b(x) c(x)= \frac{a(x)}{b(x)} \newlineIf a(2)=5 a(2)= 5 , a(2)=3 a'(2)= 3 , b(2)=8 b(2)= 8 , and b(2)=1 b'(2)= -1 , what is c(2) c'(2) ? \newlineSimplify any fractions. \newlinec(2)= c'(2)= _____

Full solution

Q. The functions a(x) a(x) and b(x) b(x) are differentiable. \newlineThe function c(x) c(x) is defined as: c(x)=a(x)b(x) c(x)= \frac{a(x)}{b(x)} \newlineIf a(2)=5 a(2)= 5 , a(2)=3 a'(2)= 3 , b(2)=8 b(2)= 8 , and b(2)=1 b'(2)= -1 , what is c(2) c'(2) ? \newlineSimplify any fractions. \newlinec(2)= c'(2)= _____
  1. Given functions and derivatives: We are given the functions a(x)a(x) and b(x)b(x), and their derivatives at x=2x = 2. We need to find the derivative of the function c(x)=a(x)b(x)c(x) = \frac{a(x)}{b(x)} at x=2x = 2. To do this, we will use the quotient rule for derivatives, which states that if h(x)=f(x)g(x)h(x) = \frac{f(x)}{g(x)}, then h(x)=f(x)g(x)f(x)g(x)(g(x))2h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}.
  2. Applying the quotient rule: First, we will apply the quotient rule using the given values. We have a(2)=5a(2) = 5, a(2)=3a'(2) = 3, b(2)=8b(2) = 8, and b(2)=1b'(2) = -1. Plugging these into the quotient rule formula, we get c(2)=a(2)b(2)a(2)b(2)(b(2))2c'(2) = \frac{a'(2)b(2) - a(2)b'(2)}{(b(2))^2}.
  3. Substituting given values: Now, we substitute the given values into the formula: c(2)=(3×85×1)82c'(2) = \frac{(3 \times 8 - 5 \times -1)}{8^2}.
  4. Performing the multiplication: Performing the multiplication, we get c(2)=24+564c'(2) = \frac{24 + 5}{64}.
  5. Adding the numbers in the numerator: Adding the numbers in the numerator, we get c(2)=2964c'(2) = \frac{29}{64}.

More problems from Compare linear, exponential, and quadratic growth