Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The following function gives the cost, in dollars, of producing 
x kilograms of fertilizer:

C(x)=0.001x^(3)-0.14x^(2)+7x+160
What is the instantaneous rate of change of the cost when 50 kilograms are produced?
Choose 1 answer:
(A) -6.5 kilograms per dollar
(B) -6.5 dollars per kilogram
(C) 0.5 kilograms per dollar
(D) 0.5 dollars per kilogram

The following function gives the cost, in dollars, of producing x x kilograms of fertilizer:\newlineC(x)=0.001x30.14x2+7x+160 C(x)=0.001 x^{3}-0.14 x^{2}+7 x+160 \newlineWhat is the instantaneous rate of change of the cost when 5050 kilograms are produced?\newlineChoose 11 answer:\newline(A) 6-6.55 kilograms per dollar\newline(B) 6-6.55 dollars per kilogram\newline(C) 00.55 kilograms per dollar\newline(D) 00.55 dollars per kilogram

Full solution

Q. The following function gives the cost, in dollars, of producing x x kilograms of fertilizer:\newlineC(x)=0.001x30.14x2+7x+160 C(x)=0.001 x^{3}-0.14 x^{2}+7 x+160 \newlineWhat is the instantaneous rate of change of the cost when 5050 kilograms are produced?\newlineChoose 11 answer:\newline(A) 6-6.55 kilograms per dollar\newline(B) 6-6.55 dollars per kilogram\newline(C) 00.55 kilograms per dollar\newline(D) 00.55 dollars per kilogram
  1. Calculate Derivative: To find the instantaneous rate of change, we need to calculate the derivative of the cost function C(x)C(x) with respect to xx.
  2. Find C(x)C'(x): Differentiate C(x)=0.001x30.14x2+7x+160C(x) = 0.001x^3 - 0.14x^2 + 7x + 160 with respect to xx to get C(x)C'(x).\newlineC(x)=0.003x20.28x+7C'(x) = 0.003x^2 - 0.28x + 7
  3. Evaluate at x=50x=50: Evaluate C(x)C'(x) at x=50x = 50 to find the instantaneous rate of change at that point.\newlineC(50)=0.003(50)20.28(50)+7C'(50) = 0.003(50)^2 - 0.28(50) + 7
  4. Calculate C(50)C'(50): Calculate the value of C(50)C'(50).
    C(50)=0.003(2500)0.28(50)+7C'(50) = 0.003(2500) - 0.28(50) + 7
    C(50)=7.514+7C'(50) = 7.5 - 14 + 7
    C(50)=0.5C'(50) = 0.5
  5. Final Instantaneous Rate: The instantaneous rate of change of the cost when 5050 kilograms are produced is 0.50.5 dollars per kilogram, which corresponds to answer choice (D).

More problems from Solve quadratic equations: word problems