Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The expression 
root(6)(10^(5))*root(3)(10^(2)) is equivalent to

10^((5)/(9))

100^((5)/(9))

10^((3)/(2))

100^((3)/(2))

The expression 10561023 \sqrt[6]{10^{5}} \cdot \sqrt[3]{10^{2}} is equivalent to\newline1059 10^{\frac{5}{9}} \newline10059 100^{\frac{5}{9}} \newline1032 10^{\frac{3}{2}} \newline10032 100^{\frac{3}{2}}

Full solution

Q. The expression 10561023 \sqrt[6]{10^{5}} \cdot \sqrt[3]{10^{2}} is equivalent to\newline1059 10^{\frac{5}{9}} \newline10059 100^{\frac{5}{9}} \newline1032 10^{\frac{3}{2}} \newline10032 100^{\frac{3}{2}}
  1. Rewrite Roots as Exponents: Rewrite the roots as fractional exponents.\newlineThe 6th6^{\text{th}} root of 10510^5 can be written as (105)16(10^5)^{\frac{1}{6}}, and the cube root of 10210^2 can be written as (102)13(10^2)^{\frac{1}{3}}.
  2. Apply Power of Power Rule: Apply the power of a power rule.\newlineWhen you have a power to a power, you multiply the exponents. So, (105)1/6(10^5)^{1/6} becomes 105/610^{5/6}, and (102)1/3(10^2)^{1/3} becomes 102/310^{2/3}.
  3. Multiply Expressions: Multiply the two expressions.\newlineNow we have 1056×102310^{\frac{5}{6}} \times 10^{\frac{2}{3}}. Since the bases are the same, we can add the exponents.
  4. Add Exponents: Add the exponents.\newlineWe add the fractions 56\frac{5}{6} and 23\frac{2}{3}. To add these fractions, we need a common denominator, which is 66. So we convert 23\frac{2}{3} to 46\frac{4}{6} and then add: (56)+(46)=(96)\left(\frac{5}{6}\right) + \left(\frac{4}{6}\right) = \left(\frac{9}{6}\right).
  5. Simplify Exponent: Simplify the exponent.\newlineThe fraction 96\frac{9}{6} can be simplified to 32\frac{3}{2}. So now we have 103210^{\frac{3}{2}}.
  6. Check for Further Simplification: Determine if the expression can be further simplified. 103210^{\frac{3}{2}} is already in its simplest form, and it matches one of the answer choices.

More problems from Operations with rational exponents